-
Notifications
You must be signed in to change notification settings - Fork 6
/
Ranking_loss.m
48 lines (45 loc) · 1.6 KB
/
Ranking_loss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
function RankingLoss=Ranking_loss(Outputs,test_target)
%Computing the hamming loss
%Outputs: the predicted outputs of the classifier, the output of the ith instance for the jth class is stored in Outputs(j,i)
%test_target: the actual labels of the test instances, if the ith instance belong to the jth class, test_target(j,i)=1, otherwise test_target(j,i)=-1
[num_class,num_instance]=size(Outputs);
temp_Outputs=[];
temp_test_target=[];
for i=1:num_instance
temp=test_target(:,i);
if((sum(temp)~=num_class)&(sum(temp)~=-num_class))
temp_Outputs=[temp_Outputs,Outputs(:,i)];
temp_test_target=[temp_test_target,temp];
end
end
Outputs=temp_Outputs;
test_target=temp_test_target;
[num_class,num_instance]=size(Outputs);
Label=cell(num_instance,1);
not_Label=cell(num_instance,1);
Label_size=zeros(1,num_instance);
for i=1:num_instance
temp=test_target(:,i);
Label_size(1,i)=sum(temp==ones(num_class,1));
for j=1:num_class
if(temp(j)==1)
Label{i,1}=[Label{i,1},j];
else
not_Label{i,1}=[not_Label{i,1},j];
end
end
end
rankloss=0;
for i=1:num_instance
temp=0;
for m=1:Label_size(i)
for n=1:(num_class-Label_size(i))
if(Outputs(Label{i,1}(m),i)<=Outputs(not_Label{i,1}(n),i))
temp=temp+1;
end
end
end
rl_binary(i)=temp/(m*n);
rankloss=rankloss+temp/(m*n);
end
RankingLoss=rankloss/num_instance;