forked from scipopt/PySCIPOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_alldiff.py
305 lines (252 loc) · 12 KB
/
test_alldiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import pytest
networkx = pytest.importorskip("networkx")
from pyscipopt import Model, Conshdlr, SCIP_RESULT, SCIP_PARAMEMPHASIS, SCIP_PARAMSETTING
try:
from types import SimpleNamespace
except:
class SimpleNamespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def __repr__(self):
keys = sorted(self.__dict__)
items = ("{}={!r}".format(k, self.__dict__[k]) for k in keys)
return "{}({})".format(type(self).__name__, ", ".join(items))
def __eq__(self, other):
return self.__dict__ == other.__dict__
#initial Sudoku values
init = [5, 3, 0, 0, 7, 0, 0, 0, 0,
6, 0, 0, 1, 9, 5, 0, 0, 0,
0, 9, 8, 0, 0, 0, 0, 6, 0,
8, 0, 0, 0, 6, 0, 0, 0, 3,
4, 0, 0, 8, 0, 3, 0, 0, 1,
7, 0, 0, 0, 2, 0, 0, 0, 6,
0, 6, 0, 0, 0, 0, 2, 8, 0,
0, 0, 0, 4, 1, 9, 0, 0, 5,
0, 0, 0, 0, 8, 0, 0, 7, 9]
def plot_graph(G):
plt = pytest.importorskip("matplotlib.pyplot")
X,Y = networkx.bipartite.sets(G)
pos = dict()
pos.update( (n, (1, i)) for i, n in enumerate(X) ) # put nodes from X at x=1
pos.update( (n, (2, i)) for i, n in enumerate(Y) ) # put nodes from Y at x=2
networkx.draw(G, pos=pos, with_labels=False)
labels = {}
for node in G.nodes():
labels[node] = node
networkx.draw_networkx_labels(G, pos, labels)
plt.show()
# all different constraint handler
class ALLDIFFconshdlr(Conshdlr):
# value graph: bipartite graph between variables and the union of their domains
# an edge connects a variable and a value iff the value is in the variable's domain
def build_value_graph(self, vars, domains):
#print(domains)
vals = set([])
for var in vars:
#print("domain of var ", var.name, "is ", domains[var])
vals.update(domains[var.ptr()]) # vals = vals union domains[var]
G = networkx.Graph()
G.add_nodes_from((var.name for var in vars), bipartite = 0) # add vars names as nodes
G.add_nodes_from(vals, bipartite = 1) # add union of values as nodes
for var in vars:
for value in domains[var.ptr()]:
G.add_edge(var.name, value)
return G, vals
# propagates single constraint: uses Regin's Algorithm as described in
# https://www.ps.uni-saarland.de/courses/seminar-ws04/papers/anastasatos.pdf
# The idea is that every solution of an all different constraint corresponds to a maximal matching in
# a bipartite graph (see value graph). Furthermore, if an arc of this arc is in no maximal matching, then
# one can remove it. Removing and arc corresponds to remove a value in the domain of the variable.
# So what the algorithm does is to determine which arcs can be in a maximal matching. Graph theory help
# us build fast algorithm so that we don't have to compute all possible maximal matchings ;)
# That being said, the implementation is pretty naive and brute-force, so there is a lot of room for improvement
def propagate_cons(self, cons):
#print("propagating cons %s with id %d"%(cons.name, id(cons)))
vars = cons.data.vars
domains = cons.data.domains
# TODO: would be nice to have a flag to know whether we should propagate the constraint.
# We would need an event handler to let us know whenever a variable of our constraint changed its domain
# Currently we can't write event handlers in python.
G, vals = self.build_value_graph(vars, domains)
try:
M = networkx.bipartite.maximum_matching(G) # returns dict between nodes in matching
except:
top_nodes = {n for n, d in G.nodes(data=True) if d['bipartite'] == 0}
bottom_nodes = set(G) - top_nodes
M = networkx.bipartite.maximum_matching(G, top_nodes) # returns dict between nodes in matching
if( len(M)/2 < len(vars) ):
#print("it is infeasible: max matching of card ", len(M), " M: ", M)
#print("Its value graph:\nV = ", G.nodes(), "\nE = ", G.edges())
plot_graph(G)
return SCIP_RESULT.CUTOFF
# build auxiliary directed graph: direct var -> val if [var, val] is in matching, otherwise var <- val
# note that all vars are matched
D = networkx.DiGraph()
D.add_nodes_from(G) ## this seems to work
for var in vars:
D.add_edge(var.name, M[var.name])
for val in domains[var.ptr()]:
if val != M[var.name]:
D.add_edge(val, var.name)
# find arcs that *do not* need to be removed and *remove* them from G. All remaining edges of G
# should be use to remove values from the domain of variables
# get all free vertices
V = set(G.nodes())
V_matched = set(M)
V_free = V.difference(V_matched)
#print("matched nodes ", V_matched, "\nfree nodes ", V_free)
# TODO quit() << this produces an assertion
# no variable should be free!
for var in vars:
assert var.name not in V_free
# perform breadth first search starting from free vertices and mark all visited edges as useful
for v in V_free:
visited_edges = networkx.bfs_edges(D, v)
G.remove_edges_from(visited_edges)
# compute strongly connected components of D and mark edges on the cc as useful
for g in networkx.strongly_connected_components(D):
for e in D.subgraph(g).edges():
if G.has_edge(*e):
G.remove_edge(*e)
# cannot remove edges in matching!
for var in vars:
e = (var.name, M[var.name])
if G.has_edge(*e):
G.remove_edge(*e)
# check that there is something to remove
if G.size() == 0:
return SCIP_RESULT.DIDNOTFIND
#print("Edges to remove!", G.edges())
# remove values
for var in vars:
for val in domains[var.ptr()].copy():
if G.has_edge(var.name, val):
domains[var.ptr()].remove(val) # this asserts if value is not there and we shouldn't delete two times the same value
# "fix" variable when possible
for var in vars:
#print("domain of var ", var.name, "is ", domains[var])
minval = min(domains[var.ptr()])
maxval = max(domains[var.ptr()])
if var.getLbLocal() < minval:
self.model.chgVarLb(var, minval)
if var.getUbLocal() > maxval:
self.model.chgVarUb(var, maxval)
#print("bounds of ", var, "are (%d,%d)"%(minval,maxval))
return SCIP_RESULT.REDUCEDDOM
# propagator callback
def consprop(self, constraints, nusefulconss, nmarkedconss, proptiming): # I have no idea what to return, documentation?
result = SCIP_RESULT.DIDNOTFIND
for cons in constraints:
prop_result = self.propagate_cons(cons)
if prop_result == SCIP_RESULT.CUTOFF:
result = prop_result
break
if prop_result == SCIP_RESULT.REDUCEDDOM:
result = prop_result
return {"result": result}
def is_cons_feasible(self, cons, solution = None):
#print("checking feasibility of constraint %s id: %d"%(cons.name, id(cons)))
sol_values = set()
for var in cons.data.vars:
sol_values.add(round(self.model.getSolVal(solution, var)))
#print("sol_values = ", sol_values)
return len(sol_values) == len(cons.data.vars)
# checks whether solution is feasible, ie, if they are all different
# since the checkpriority is < 0, we are only called if the integrality
# constraint handler didn't find infeasibility, so solution is integral
def conscheck(self, constraints, solution, check_integrality, check_lp_rows, print_reason, completely):
for cons in constraints:
if not self.is_cons_feasible(cons, solution):
return {"result": SCIP_RESULT.INFEASIBLE}
return {"result": SCIP_RESULT.FEASIBLE}
# enforces LP solution
def consenfolp(self, constraints, n_useful_conss, sol_infeasible):
for cons in constraints:
if not self.is_cons_feasible(cons):
# TODO: suggest some value to branch on
return {"result": SCIP_RESULT.INFEASIBLE}
return {"result": SCIP_RESULT.FEASIBLE}
def conslock(self, constraint, locktype, nlockspos, nlocksneg):
for var in constraint.data.vars:
self.model.addVarLocks(var, nlockspos + nlocksneg , nlockspos + nlocksneg)
def constrans(self, constraint):
#print("CONSTRANS BEING CAAAAAAAAAAAAAAAAAAAALLLLLLED")
return {}
# builds sudoku model; adds variables and all diff constraints
def create_sudoku():
scip = Model("Sudoku")
x = {} # values of squares
for row in range(9):
for col in range(9):
# some variables are fix
if init[row*9 + col] != 0:
x[row,col] = scip.addVar(vtype = "I", lb = init[row*9 + col], ub = init[row*9 + col], name = "x(%s,%s)" % (row,col))
else:
x[row,col] = scip.addVar(vtype = "I", lb = 1, ub = 9, name = "x(%s,%s)" % (row,col))
var = x[row,col]
#print("built var ", var.name, " with bounds: (%d,%d)"%(var.getLbLocal(), var.getUbLocal()))
conshdlr = ALLDIFFconshdlr()
# hoping to get called when all vars have integer values
scip.includeConshdlr(conshdlr, "ALLDIFF", "All different constraint", propfreq = 1, enfopriority = -10, chckpriority = -10)
# row constraints; also we specify the domain of all variables here
# TODO/QUESTION: in principle domain is of course associated to the var and not the constraint. it should be "var.data"
# But ideally that information would be handle by SCIP itself... the reason we can't is because domain holes is not implemented, right?
domains = {}
for row in range(9):
vars = []
for col in range(9):
var = x[row,col]
vars.append(var)
vals = set(range(int(round(var.getLbLocal())), int(round(var.getUbLocal())) + 1))
domains[var.ptr()] = vals
# this is kind of ugly, isn't it?
cons = scip.createCons(conshdlr, "row_%d" % row)
#print("in test: received a constraint with id ", id(cons)) ### DELETE
cons.data = SimpleNamespace() # so that data behaves like an instance of a class (ie, cons.data.whatever is allowed)
cons.data.vars = vars
cons.data.domains = domains
scip.addPyCons(cons)
# col constraints
for col in range(9):
vars = []
for row in range(9):
var = x[row,col]
vars.append(var)
cons = scip.createCons(conshdlr, "col_%d"%col)
cons.data = SimpleNamespace()
cons.data.vars = vars
cons.data.domains = domains
scip.addPyCons(cons)
# square constraints
for idx1 in range(3):
for idx2 in range(3):
vars = []
for row in range(3):
for col in range(3):
var = x[3*idx1 + row, 3*idx2 + col]
vars.append(var)
cons = scip.createCons(conshdlr, "square_%d-%d"%(idx1, idx2))
cons.data = SimpleNamespace()
cons.data.vars = vars
cons.data.domains = domains
scip.addPyCons(cons)
#scip.setObjective()
return scip, x
def test_main():
scip, x = create_sudoku()
#scip.setBoolParam("misc/allowdualreds", False)
scip.setBoolParam("misc/allowdualreds", False)
scip.setEmphasis(SCIP_PARAMEMPHASIS.CPSOLVER)
scip.setPresolve(SCIP_PARAMSETTING.OFF)
scip.optimize()
if scip.getStatus() != 'optimal':
print('Sudoku is not feasible!')
else:
print('\nSudoku solution:\n')
for row in range(9):
out = ''
for col in range(9):
out += str(round(scip.getVal(x[row,col]))) + ' '
print(out)
if __name__ == "__main__":
test_main()