-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsynthetic_data.py
206 lines (163 loc) · 7.74 KB
/
synthetic_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""this synthetic experiment file is adapted from Poisson Identifiable VAE (pi-VAE)
at https://github.com/zhd96/pi-vae. Pls refer to the original code if needed."""
import numpy as np
import torch
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Lambda
from keras import backend as K
# util functions
def slice_func(x, start, size):
return tf.slice(x, [0,start],[-1,size])
def perm_func(x, ind):
# print(ind)
ind = tf.dtypes.cast(ind, tf.int32)
return tf.gather(x, indices=ind, axis=-1)
def realnvp_layer(x_input):
DD = x_input.shape.as_list()[-1] ## DD needs to be an even number
dd = (DD // 2)
## define some lambda functions
clamp_func = Lambda(lambda x: 0.1 * tf.tanh(x))
trans_func = Lambda(lambda x: x[0] * tf.exp(x[1]) + x[2])
sum_func = Lambda(lambda x: K.sum(-x, axis=-1, keepdims=True))
## compute output for s and t functions
x_input1 = Lambda(slice_func, arguments={'start': 0, 'size': dd})(x_input)
x_input2 = Lambda(slice_func, arguments={'start': dd, 'size': dd})(x_input)
st_output = x_input1
n_nodes = [dd // 2, dd // 2, DD]
act_func = ['relu', 'relu', 'linear']
for ii in range(len(act_func)):
st_output = layers.Dense(n_nodes[ii], activation=act_func[ii])(st_output)
s_output = Lambda(slice_func, arguments={'start': 0, 'size': dd})(st_output)
t_output = Lambda(slice_func, arguments={'start': dd, 'size': dd})(st_output)
s_output = clamp_func(s_output) ## keep small values of s
## perform transformation
trans_x = trans_func([x_input2, s_output, t_output])
output = layers.concatenate([trans_x, x_input1], axis=-1)
return output
def realnvp_block(x_output):
for _ in range(2):
x_output = realnvp_layer(x_output)
return x_output
# simulate data
def simulate_cont_data_diff_var(length, n_dim, type=0):
## simulate 2d z
np.random.seed(777+type)
u_true = np.random.uniform(2 * np.pi/8 * type, 2 * np.pi/8 * (type+1), size=[length, 1])
mu_true = np.hstack((5 * np.sin(u_true), 5 * np.cos(u_true)))
# var_true = 0.03 * np.abs(mu_true)
var_true = 0.10 * np.abs(mu_true)
var_true[:, 0] = 0.6 - var_true[:, 1]
z_true = np.random.normal(0, 1, size=[length, 2]) * np.sqrt(var_true) + mu_true
z_true = np.hstack((z_true, np.zeros((z_true.shape[0], n_dim - 2))))
## simulate mean
dim_x = z_true.shape[-1]
permute_ind = []
n_blk = 4
for ii in range(n_blk):
np.random.seed(ii)
permute_ind.append(tf.convert_to_tensor(np.random.permutation(dim_x)))
x_input = layers.Input(shape=(dim_x,))
x_output = realnvp_block(x_input)
for ii in range(n_blk - 1):
x_output = Lambda(perm_func, arguments={'ind': permute_ind[ii]})(x_output)
x_output = realnvp_block(x_output)
realnvp_model = Model(inputs=[x_input], outputs=x_output)
mean_true = realnvp_model.predict(z_true)
lam_true = np.exp(2.2 * np.tanh(mean_true))
return z_true, u_true, mean_true, lam_true
# store data to use later
def synthetic_data():
length = 15000
n_dim = 100
z_true, u_true, mean_true, lam_true = simulate_cont_data_diff_var(length, n_dim)
np.random.seed(777)
x_true = np.random.poisson(lam_true)
# import os
# os.makedirs("./data/sim")
np.savez('./data/sim/sim_100d_poisson_cont_label.npz', u=u_true, z=z_true, x=x_true, lam=lam_true, mean=mean_true)
# util functions for training SwapVAE
class sample_sequence():
'''sample sequence based on existing data
the goal is:
return a `firing rate'
return a `reaching direction label'
return a `time label'
return a `sequence length thing'
'''
def __init__(self, data, len=4):
self.u = data['u'] # (20000*0.8, 1) (u: the label)
self.z = data['z'] # (20000*0.8, 100)
self.x = data['x'] # (20000*0.8, 100)
self.len = len
self.trial_id = 0
self.firing_rates = []
self.time_label = []
self.direction_label = []
self.sequence_length = []
self.loop_through()
def get_specific_direction(self, direction=0):
'''direction = 0, 1, 2, 3'''
return self.u[direction*4000:(direction+1)*4000], self.z[direction*4000:(direction+1)*4000], self.x[direction*4000:(direction+1)*4000]
def sample_seq(self, u, z, x, len=4, direction=0):
'''for example direction0 --> 2*np.pi/8 * 0, 2 * np.pi/8 * (0+1), actually direction is 0,2,4,6
to sample the real sequence we would like 2*np.pi/8 / len as the division'''
div = (2*np.pi/8)/len
real_direction = direction*2
base_direction = (2*np.pi/8 * real_direction) # beginning direction
u_set = []
z_set = []
x_set = []
len_set = []
time_label = []
for time in range(len):
mask = (u >= base_direction + div * time) & (u < base_direction + div * (time+1))
len_set.append(u[mask].shape[0])
len_min = min(len_set)
#print("len_min ", len_min)
# prune additional ones
for time in range(len):
mask = (u >= base_direction + div * time) & (u < base_direction + div * (time + 1))
mask = np.squeeze(mask)
#print(u[mask].shape)
u_set.append(u[mask, :][:len_min, :]) # for example (1000, 1)
z_set.append(z[mask, :][:len_min, :])
x_set.append(x[mask, :][:len_min, :]) # for example (1000, 100)
time_label.append(np.ones((len_min, 1))*time)
u_set = np.stack(u_set, axis=1) # (1000, 4, 1)
z_set = np.stack(z_set, axis=1)
x_set = np.stack(x_set, axis=1) # (1000, 4, 100) --> trials*time*firing_rate
self.firing_rates.append(x_set)
self.direction_label.append(np.ones((x_set.shape[0], x_set.shape[1], 1))*direction)
self.time_label.append(np.stack(time_label, axis=1))
for trial in range(len_min):
self.sequence_length.append(len)
self.trial_id += 1
def loop_through(self):
for direction in range(4):
u,z,x = self.get_specific_direction(direction=direction)
self.sample_seq(u,z,x, len=self.len, direction=direction)
self.firing_rates = np.concatenate(self.firing_rates)
self.time_label = np.concatenate(self.time_label)
self.direction_label = np.concatenate(self.direction_label)
print(self.firing_rates.shape, self.time_label.shape, self.direction_label.shape)
def sample_portion(self, numb=1000):
perm = torch.randperm(self.firing_rates.shape[0])
idx = perm[:numb]
return self.firing_rates[idx], self.direction_label[idx], self.time_label[idx]
# samples = tensor[idx]
def get_angular_data_synthetic(data_train, data_test, device='cpu'):
def get_data(loader):
firing_rates = torch.flatten(torch.Tensor(loader.firing_rates), start_dim=0, end_dim=1).numpy()
labels = torch.flatten(torch.Tensor(loader.direction_label), start_dim=0, end_dim=1).numpy()
angles = (2 * np.pi / 4 * labels)[:, np.newaxis]
cos_sin = np.concatenate([np.cos(angles), np.sin(angles)], axis=1)
data = [torch.tensor(firing_rates, dtype=torch.float32, device=device),
torch.tensor(angles, dtype=torch.float32, device=device),
torch.tensor(cos_sin, dtype=torch.float32, device=device),
torch.tensor(labels, dtype=torch.float32, device=device)]
return data
data_train__ = get_data(data_train)
data_test__ = get_data(data_test)
return data_train__, data_test__