This repository was archived by the owner on Feb 17, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathsave_graph.py
56 lines (48 loc) · 1.89 KB
/
save_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
def freeze_graph(mode, read_file ,model_folder):
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1])
output_graph = "../model/Trained_Graphs/" + mode + "_frozen_model.pb"
if mode == 'encoder':
if read_file:
output_node_names = [
"Preprocessed_JPG",
"Preprocessed_PNG",
"Output_Features"]
else:
print "without file I/O"
output_node_names = ["Output_Features"]
if mode == 'decoder':
with open("../model/Decoder/DecoderOutputs.txt", 'r') as f:
output_node_names = f.read()
output_node_names = output_node_names.split('\n')[:-1]
saver = tf.train.import_meta_graph(input_checkpoint + '.meta')
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
saver.restore(sess, input_checkpoint)
output_graph_def = graph_util.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names)
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print "ProtoBuf File Saved:", output_graph
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str, choices=["encoder","decoder"])
parser.add_argument(
"--model_folder",
type=str,
help="Model folder to export")
parser.add_argument(
"--read_file",
action="store_true")
args = parser.parse_args()
freeze_graph(args.mode, args.read_file, args.model_folder)