-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
123 lines (104 loc) · 4.32 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import random
from pathlib import Path
import numpy as np
from PIL import Image
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision.transforms.functional as TF
class RandomResize:
def __init__(self, from_size, to_size):
self.from_size = from_size
self.to_size = to_size
def __call__(self, x):
size = random.randint(self.from_size, self.to_size)
w, h = x.size
if w > h:
h = int(size / w * h)
w = size
else:
w = int(size / h * w)
h = size
x = TF.resize(x, (h, w))
return x
class DreamBoothDatasetWithTags(Dataset):
"""
A dataset to prepare the instance and class images with the promots for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
tags=None,
flip=False,
add_pad=True,
min_size=300,
max_size=768,
new_word_pairs=[],
):
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
instance_data_root = Path(instance_data_root)
# self.instance_images_path = sorted(list(instance_data_root.glob("**/*.png")))
self.instance_subdir_path = [d.stem for d in sorted(list(instance_data_root.iterdir()))]
self.subdir_images_path = [sorted(list((instance_data_root / d).glob("*.png"))) for d in self.instance_subdir_path]
self.subdir_size_list = [len(d) for d in self.subdir_images_path]
self.max_size = max(self.subdir_size_list)
self._length = self.max_size * len(self.instance_subdir_path)
self.instance_prompt = instance_prompt
self.tags = tags
self.add_pad = add_pad
self.new_word_list = [w.replace("<", "").replace(">", "") for _, w in new_word_pairs]
image_transforms = [RandomResize(min_size, max_size)]
if flip:
image_transforms.append(transforms.RandomHorizontalFlip(p=0.5))
image_transforms.append(transforms.ToTensor())
image_transforms.append(transforms.Normalize([0.5], [0.5]))
self.image_transforms = transforms.Compose(image_transforms)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
subdir_index0 = index // self.max_size
subdir_index1 = (index % self.max_size) % self.subdir_size_list[subdir_index0]
img_filename = self.subdir_images_path[subdir_index0][subdir_index1]
instance_image = Image.open(img_filename)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
if self.tags is not None:
key = f"{img_filename.parent.stem}_{img_filename.stem}"
if key in self.tags:
label = img_filename.parent.stem
info = self.tags[key]
tag = info["tag"]
weight = info["weight"]
property = info["property"]
if property == "style":
header = f"style of {label}"
else:
header = f"{label}"
header = f"{header} {self.instance_prompt}"
if isinstance(tag, str):
instance_prompt = f"{header}, {tag}"
elif isinstance(tag, list):
tag_list = [key.replace("_", " ").replace("rating:", "") for key, prob in tag if prob > np.random.rand()]
random.shuffle(tag_list)
tags_str = " ".join(tag_list)
instance_prompt = f"{header}, {tags_str}"
else:
assert False, key
example["weight"] = weight
else:
instance_prompt = self.instance_prompt
example["weight"] = 1.0
example["instance_prompt_ids"] = self.tokenizer(
instance_prompt,
padding="max_length" if self.add_pad else "do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example