forked from opencv/opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinner_functions.cpp
159 lines (136 loc) · 5.45 KB
/
inner_functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv { namespace ml {
ParamGrid::ParamGrid() { minVal = maxVal = 0.; logStep = 1; }
ParamGrid::ParamGrid(double _minVal, double _maxVal, double _logStep)
{
minVal = std::min(_minVal, _maxVal);
maxVal = std::max(_minVal, _maxVal);
logStep = std::max(_logStep, 1.);
}
bool StatModel::empty() const { return !isTrained(); }
int StatModel::getVarCount() const { return 0; }
bool StatModel::train( const Ptr<TrainData>&, int )
{
CV_Error(CV_StsNotImplemented, "");
return false;
}
bool StatModel::train( InputArray samples, int layout, InputArray responses )
{
return train(TrainData::create(samples, layout, responses));
}
float StatModel::calcError( const Ptr<TrainData>& data, bool testerr, OutputArray _resp ) const
{
Mat samples = data->getSamples();
int layout = data->getLayout();
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx();
const int* sidx_ptr = sidx.ptr<int>();
int i, n = (int)sidx.total();
bool isclassifier = isClassifier();
Mat responses = data->getResponses();
int responses_type = responses.type();
if( n == 0 )
n = data->getNSamples();
if( n == 0 )
return -FLT_MAX;
Mat resp;
if( _resp.needed() )
resp.create(n, 1, CV_32F);
double err = 0;
for( i = 0; i < n; i++ )
{
int si = sidx_ptr ? sidx_ptr[i] : i;
Mat sample = layout == ROW_SAMPLE ? samples.row(si) : samples.col(si);
float val = predict(sample);
float val0 = (responses_type == CV_32S) ? (float)responses.at<int>(si) : responses.at<float>(si);
if( isclassifier )
err += fabs(val - val0) > FLT_EPSILON;
else
err += (val - val0)*(val - val0);
if( !resp.empty() )
resp.at<float>(i) = val;
/*if( i < 100 )
{
printf("%d. ref %.1f vs pred %.1f\n", i, val0, val);
}*/
}
if( _resp.needed() )
resp.copyTo(_resp);
return (float)(err / n * (isclassifier ? 100 : 1));
}
/* Calculates upper triangular matrix S, where A is a symmetrical matrix A=S'*S */
static void Cholesky( const Mat& A, Mat& S )
{
CV_Assert(A.type() == CV_32F);
S = A.clone();
cv::Cholesky ((float*)S.ptr(),S.step, S.rows,NULL, 0, 0);
S = S.t();
for (int i=1;i<S.rows;i++)
for (int j=0;j<i;j++)
S.at<float>(i,j)=0;
}
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
average row vector, <cov> - symmetric covariation matrix */
void randMVNormal( InputArray _mean, InputArray _cov, int nsamples, OutputArray _samples )
{
// check mean vector and covariance matrix
Mat mean = _mean.getMat(), cov = _cov.getMat();
int dim = (int)mean.total(); // dimensionality
CV_Assert(mean.rows == 1 || mean.cols == 1);
CV_Assert(cov.rows == dim && cov.cols == dim);
mean = mean.reshape(1,1); // ensure a row vector
// generate n-samples of the same dimension, from ~N(0,1)
_samples.create(nsamples, dim, CV_32F);
Mat samples = _samples.getMat();
randn(samples, Scalar::all(0), Scalar::all(1));
// decompose covariance using Cholesky: cov = U'*U
// (cov must be square, symmetric, and positive semi-definite matrix)
Mat utmat;
Cholesky(cov, utmat);
// transform random numbers using specified mean and covariance
for( int i = 0; i < nsamples; i++ )
{
Mat sample = samples.row(i);
sample = sample * utmat + mean;
}
}
}}
/* End of file */