-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage_processing.py
54 lines (37 loc) · 1.87 KB
/
language_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import json
from nltk import word_tokenize, pos_tag
import numpy as np
import pandas as pd
from mlxtend.frequent_patterns import apriori
class nlp:
def __init__(self) -> None:
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
def get_nouns(self):
def apply_tokenization(review):
return [token for token,
pos in pos_tag(word_tokenize(review)) if pos.startswith('N')]
def remove_smaller_nouns(nouns):
return [noun for noun in nouns if len(noun) >= 3]
self.df['nouns'] = self.df['review'].apply(lambda x: apply_tokenization(x))
self.df['nouns'] = self.df['nouns'].apply(lambda x: remove_smaller_nouns(x))
def dump_binary_matrix(self, matrix_path):
df = pd.DataFrame(
self.binary_matrix, index=range(self.reviews_count), columns=self.net_nouns)
df.to_csv(matrix_path, index=True, header=True)
def generate_binary_matrix(self):
self.reviews_count = self.df.shape[0]
self.net_nouns = self.df['nouns'].apply(tuple).explode().unique()
self.shape = (self.reviews_count, len(self.net_nouns))
self.binary_matrix = np.zeros(self.shape)
self.binary_matrix = self.binary_matrix.astype(int)
for review in self.df.iterrows():
for noun in review[1]['nouns']:
self.binary_matrix[review[1]['review_id']][int(np.where(self.net_nouns == noun)[0])] = 1
# self.df.to_csv("./data/with_nouns.csv")
def get_frequenct_items(self, freq_items_path):
self.binary_matrix_df = pd.DataFrame(data=self.binary_matrix[1:,1:], index=self.binary_matrix[1:,0],
columns=self.binary_matrix[0,1:])
self.frq_items = apriori(self.binary_matrix_df.iloc[:, 1:], min_support = 0.1, use_colnames = True)
self.frq_items.to_csv(freq_items_path)