forked from CesiumGS/cesium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoundingSphere.js
1055 lines (914 loc) · 42.9 KB
/
BoundingSphere.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*global define*/
define([
'./defaultValue',
'./defined',
'./DeveloperError',
'./Cartesian3',
'./Cartesian4',
'./Cartographic',
'./Ellipsoid',
'./GeographicProjection',
'./Intersect',
'./Interval',
'./Matrix4'
], function(
defaultValue,
defined,
DeveloperError,
Cartesian3,
Cartesian4,
Cartographic,
Ellipsoid,
GeographicProjection,
Intersect,
Interval,
Matrix4) {
"use strict";
/**
* A bounding sphere with a center and a radius.
* @alias BoundingSphere
* @constructor
*
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere.
* @param {Number} [radius=0.0] The radius of the bounding sphere.
*
* @see AxisAlignedBoundingBox
* @see BoundingRectangle
*/
var BoundingSphere = function(center, radius) {
/**
* The center point of the sphere.
* @type {Cartesian3}
* @default {@link Cartesian3.ZERO}
*/
this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO));
/**
* The radius of the sphere.
* @type {Number}
* @default 0.0
*/
this.radius = defaultValue(radius, 0.0);
};
var fromPointsXMin = new Cartesian3();
var fromPointsYMin = new Cartesian3();
var fromPointsZMin = new Cartesian3();
var fromPointsXMax = new Cartesian3();
var fromPointsYMax = new Cartesian3();
var fromPointsZMax = new Cartesian3();
var fromPointsCurrentPos = new Cartesian3();
var fromPointsScratch = new Cartesian3();
var fromPointsRitterCenter = new Cartesian3();
var fromPointsMinBoxPt = new Cartesian3();
var fromPointsMaxBoxPt = new Cartesian3();
var fromPointsNaiveCenterScratch = new Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points.
* The bounding sphere is computed by running two algorithms, a naive algorithm and
* Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit.
* @memberof BoundingSphere
*
* @param {Array} positions An array of points that the bounding sphere will enclose. Each point must have <code>x</code>, <code>y</code>, and <code>z</code> properties.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see <a href='http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/'>Bounding Sphere computation article</a>
*/
BoundingSphere.fromPoints = function(positions, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(positions) || positions.length === 0) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
var currentPos = Cartesian3.clone(positions[0], fromPointsCurrentPos);
var xMin = Cartesian3.clone(currentPos, fromPointsXMin);
var yMin = Cartesian3.clone(currentPos, fromPointsYMin);
var zMin = Cartesian3.clone(currentPos, fromPointsZMin);
var xMax = Cartesian3.clone(currentPos, fromPointsXMax);
var yMax = Cartesian3.clone(currentPos, fromPointsYMax);
var zMax = Cartesian3.clone(currentPos, fromPointsZMax);
var numPositions = positions.length;
for ( var i = 1; i < numPositions; i++) {
Cartesian3.clone(positions[i], currentPos);
var x = currentPos.x;
var y = currentPos.y;
var z = currentPos.z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
var xSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(xMax, xMin, fromPointsScratch));
var ySpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(yMax, yMin, fromPointsScratch));
var zSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(zMax, zMin, fromPointsScratch));
// Set the diameter endpoints to the largest span.
var diameter1 = xMin;
var diameter2 = xMax;
var maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
var ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
var radiusSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
var ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
var minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
var maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
var naiveCenter = Cartesian3.multiplyByScalar(Cartesian3.add(minBoxPt, maxBoxPt, fromPointsScratch), 0.5, fromPointsNaiveCenterScratch);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
var naiveRadius = 0;
for (i = 0; i < numPositions; i++) {
Cartesian3.clone(positions[i], currentPos);
// Find the furthest point from the naive center to calculate the naive radius.
var r = Cartesian3.magnitude(Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
var oldCenterToPointSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
if (oldCenterToPointSquared > radiusSquared) {
var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
var oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
var defaultProjection = new GeographicProjection();
var fromExtent2DLowerLeft = new Cartesian3();
var fromExtent2DUpperRight = new Cartesian3();
var fromExtent2DSouthwest = new Cartographic();
var fromExtent2DNortheast = new Cartographic();
/**
* Computes a bounding sphere from an extent projected in 2D.
*
* @memberof BoundingSphere
*
* @param {Extent} extent The extent around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the extent into 2D.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromExtent2D = function(extent, projection, result) {
return BoundingSphere.fromExtentWithHeights2D(extent, projection, 0.0, 0.0, result);
};
/**
* Computes a bounding sphere from an extent projected in 2D. The bounding sphere accounts for the
* object's minimum and maximum heights over the extent.
*
* @memberof BoundingSphere
*
* @param {Extent} extent The extent around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the extent into 2D.
* @param {Number} [minimumHeight=0.0] The minimum height over the extent.
* @param {Number} [maximumHeight=0.0] The maximum height over the extent.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromExtentWithHeights2D = function(extent, projection, minimumHeight, maximumHeight, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(extent)) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
projection = defaultValue(projection, defaultProjection);
extent.getSouthwest(fromExtent2DSouthwest);
fromExtent2DSouthwest.height = minimumHeight;
extent.getNortheast(fromExtent2DNortheast);
fromExtent2DNortheast.height = maximumHeight;
var lowerLeft = projection.project(fromExtent2DSouthwest, fromExtent2DLowerLeft);
var upperRight = projection.project(fromExtent2DNortheast, fromExtent2DUpperRight);
var width = upperRight.x - lowerLeft.x;
var height = upperRight.y - lowerLeft.y;
var elevation = upperRight.z - lowerLeft.z;
result.radius = Math.sqrt(width * width + height * height + elevation * elevation) * 0.5;
var center = result.center;
center.x = lowerLeft.x + width * 0.5;
center.y = lowerLeft.y + height * 0.5;
center.z = lowerLeft.z + elevation * 0.5;
return result;
};
var fromExtent3DScratch = [];
/**
* Computes a bounding sphere from an extent in 3D. The bounding sphere is created using a subsample of points
* on the ellipsoid and contained in the extent. It may not be accurate for all extents on all types of ellipsoids.
* @memberof BoundingSphere
*
* @param {Extent} extent The valid extent used to create a bounding sphere.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the extent.
* @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromExtent3D = function(extent, ellipsoid, surfaceHeight, result) {
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
surfaceHeight = defaultValue(surfaceHeight, 0.0);
var positions;
if (defined(extent)) {
positions = extent.subsample(ellipsoid, surfaceHeight, fromExtent3DScratch);
}
return BoundingSphere.fromPoints(positions, result);
};
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are
* stored in a flat array in X, Y, Z, order. The bounding sphere is computed by running two
* algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
* ensure a tight fit.
*
* @memberof BoundingSphere
*
* @param {Array} positions An array of points that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the
* origin of the coordinate system. This is useful when the positions are to be used for
* relative-to-center (RTC) rendering.
* @param {Number} [stride=3] The number of array elements per vertex. It must be at least 3, but it may
* be higher. Regardless of the value of this parameter, the X coordinate of the first position
* is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index
* 2. When stride is 3, the X coordinate of the next position then begins at array index 3. If
* the stride is 5, however, two array elements are skipped and the next position begins at array
* index 5.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see <a href='http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/'>Bounding Sphere computation article</a>
*
* @example
* // Compute the bounding sphere from 3 positions, each specified relative to a center.
* // In addition to the X, Y, and Z coordinates, the points array contains two additional
* // elements per point which are ignored for the purpose of computing the bounding sphere.
* var center = new Cartesian3(1.0, 2.0, 3.0);
* var points = [1.0, 2.0, 3.0, 0.1, 0.2,
* 4.0, 5.0, 6.0, 0.1, 0.2,
* 7.0, 8.0, 9.0, 0.1, 0.2];
* var sphere = BoundingSphere.fromVertices(points, center, 5);
*/
BoundingSphere.fromVertices = function(positions, center, stride, result) {
if (!defined(result)) {
result = new BoundingSphere();
}
if (!defined(positions) || positions.length === 0) {
result.center = Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
center = defaultValue(center, Cartesian3.ZERO);
stride = defaultValue(stride, 3);
//>>includeStart('debug', pragmas.debug);
if (stride < 3) {
throw new DeveloperError('stride must be 3 or greater.');
}
//>>includeEnd('debug');
var currentPos = fromPointsCurrentPos;
currentPos.x = positions[0] + center.x;
currentPos.y = positions[1] + center.y;
currentPos.z = positions[2] + center.z;
var xMin = Cartesian3.clone(currentPos, fromPointsXMin);
var yMin = Cartesian3.clone(currentPos, fromPointsYMin);
var zMin = Cartesian3.clone(currentPos, fromPointsZMin);
var xMax = Cartesian3.clone(currentPos, fromPointsXMax);
var yMax = Cartesian3.clone(currentPos, fromPointsYMax);
var zMax = Cartesian3.clone(currentPos, fromPointsZMax);
var numElements = positions.length;
for (var i = 0; i < numElements; i += stride) {
var x = positions[i] + center.x;
var y = positions[i + 1] + center.y;
var z = positions[i + 2] + center.z;
currentPos.x = x;
currentPos.y = y;
currentPos.z = z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
var xSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(xMax, xMin, fromPointsScratch));
var ySpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(yMax, yMin, fromPointsScratch));
var zSpan = Cartesian3.magnitudeSquared(Cartesian3.subtract(zMax, zMin, fromPointsScratch));
// Set the diameter endpoints to the largest span.
var diameter1 = xMin;
var diameter2 = xMax;
var maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
var ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
var radiusSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
var ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
var minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
var maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
var naiveCenter = Cartesian3.multiplyByScalar(Cartesian3.add(minBoxPt, maxBoxPt, fromPointsScratch), 0.5, fromPointsNaiveCenterScratch);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
var naiveRadius = 0;
for (i = 0; i < numElements; i += stride) {
currentPos.x = positions[i] + center.x;
currentPos.y = positions[i + 1] + center.y;
currentPos.z = positions[i + 2] + center.z;
// Find the furthest point from the naive center to calculate the naive radius.
var r = Cartesian3.magnitude(Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
var oldCenterToPointSquared = Cartesian3.magnitudeSquared(Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
if (oldCenterToPointSquared > radiusSquared) {
var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
var oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
/**
* Computes a bounding sphere from the corner points of an axis-aligned bounding box. The sphere
* tighly and fully encompases the box.
*
* @memberof BoundingSphere
*
* @param {Number} [corner] The minimum height over the extent.
* @param {Number} [oppositeCorner] The maximum height over the extent.
* @param {BoundingSphere} [result] The object onto which to store the result.
*
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} corner and oppositeCorner are required.
*
* @example
* // Create a bounding sphere around the unit cube
* var sphere = BoundingSphere.fromCornerPoints(new Cartesian3(-0.5, -0.5, -0.5), new Cartesian3(0.5, 0.5, 0.5));
*/
BoundingSphere.fromCornerPoints = function(corner, oppositeCorner, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(corner) || !defined(oppositeCorner)) {
throw new DeveloperError('corner and oppositeCorner are required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
var center = result.center;
Cartesian3.add(corner, oppositeCorner, center);
Cartesian3.multiplyByScalar(center, 0.5, center);
result.radius = Cartesian3.distance(center, oppositeCorner);
return result;
};
/**
* Creates a bounding sphere encompassing an ellipsoid.
*
* @memberof BoundingSphere
*
* @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
*
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} ellipsoid is required.
*
* @example
* var boundingSphere = BoundingSphere.fromEllipsoid(ellipsoid);
*/
BoundingSphere.fromEllipsoid = function(ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(ellipsoid)) {
throw new DeveloperError('ellipsoid is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
Cartesian3.clone(Cartesian3.ZERO, result.center);
result.radius = ellipsoid.getMaximumRadius();
return result;
};
/**
* Duplicates a BoundingSphere instance.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to duplicate.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined)
*/
BoundingSphere.clone = function(sphere, result) {
if (!defined(sphere)) {
return undefined;
}
if (!defined(result)) {
return new BoundingSphere(sphere.center, sphere.radius);
}
result.center = Cartesian3.clone(sphere.center, result.center);
result.radius = sphere.radius;
return result;
};
var unionScratch = new Cartesian3();
var unionScratchCenter = new Cartesian3();
/**
* Computes a bounding sphere that contains both the left and right bounding spheres.
* @memberof BoundingSphere
*
* @param {BoundingSphere} left A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} right A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} left is required.
* @exception {DeveloperError} right is required.
*/
BoundingSphere.union = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(left)) {
throw new DeveloperError('left is required.');
}
if (!defined(right)) {
throw new DeveloperError('right is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
var leftCenter = left.center;
var rightCenter = right.center;
Cartesian3.add(leftCenter, rightCenter, unionScratchCenter);
var center = Cartesian3.multiplyByScalar(unionScratchCenter, 0.5, unionScratchCenter);
var radius1 = Cartesian3.magnitude(Cartesian3.subtract(leftCenter, center, unionScratch)) + left.radius;
var radius2 = Cartesian3.magnitude(Cartesian3.subtract(rightCenter, center, unionScratch)) + right.radius;
result.radius = Math.max(radius1, radius2);
Cartesian3.clone(center, result.center);
return result;
};
var expandScratch = new Cartesian3();
/**
* Computes a bounding sphere by enlarging the provided sphere to contain the provided point.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere A sphere to expand.
* @param {Cartesian3} point A point to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} sphere is required.
* @exception {DeveloperError} point is required.
*/
BoundingSphere.expand = function(sphere, point, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
if (!defined(point)) {
throw new DeveloperError('point is required.');
}
//>>includeEnd('debug');
result = BoundingSphere.clone(sphere, result);
var radius = Cartesian3.magnitude(Cartesian3.subtract(point, result.center, expandScratch));
if (radius > result.radius) {
result.radius = radius;
}
return result;
};
/**
* Determines which side of a plane a sphere is located.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to test.
* @param {Cartesian4} plane The coefficients of the plane in the for ax + by + cz + d = 0
* where the coefficients a, b, c, and d are the components x, y, z,
* and w of the {Cartesian4}, respectively.
* @returns {Intersect} {Intersect.INSIDE} if the entire sphere is on the side of the plane the normal
* is pointing, {Intersect.OUTSIDE} if the entire sphere is on the opposite side,
* and {Intersect.INTERSETING} if the sphere intersects the plane.
*
* @exception {DeveloperError} sphere is required.
* @exception {DeveloperError} plane is required.
*/
BoundingSphere.intersect = function(sphere, plane) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
if (!defined(plane)) {
throw new DeveloperError('plane is required.');
}
//>>includeEnd('debug');
var center = sphere.center;
var radius = sphere.radius;
var distanceToPlane = Cartesian3.dot(plane, center) + plane.w;
if (distanceToPlane < -radius) {
// The center point is negative side of the plane normal
return Intersect.OUTSIDE;
} else if (distanceToPlane < radius) {
// The center point is positive side of the plane, but radius extends beyond it; partial overlap
return Intersect.INTERSECTING;
}
return Intersect.INSIDE;
};
var columnScratch = new Cartesian3();
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} sphere is required.
* @exception {DeveloperError} transform is required.
*/
BoundingSphere.transform = function(sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
if (!defined(transform)) {
throw new DeveloperError('transform is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
result.radius = Math.max(Cartesian3.magnitude(Matrix4.getColumn(transform, 0, columnScratch)),
Cartesian3.magnitude(Matrix4.getColumn(transform, 1, columnScratch)),
Cartesian3.magnitude(Matrix4.getColumn(transform, 2, columnScratch))) * sphere.radius;
return result;
};
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale
* The transformation matrix is not verified to have a uniform scale of 1.
* This method is faster than computing the general bounding sphere transform using {@link #transform}.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} sphere is required.
* @exception {DeveloperError} transform is required.
*
* @example
* var modelMatrix = Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid);
* var boundingSphere = new BoundingSphere();
* var newBoundingSphere = BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix);
*/
BoundingSphere.transformWithoutScale = function(sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
if (!defined(transform)) {
throw new DeveloperError('transform is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
result.radius = sphere.radius;
return result;
};
var scratchCartesian3 = new Cartesian3();
/**
* The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
* plus/minus the radius of the bounding sphere.
* <br>
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding sphere.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to calculate the distance to.
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Cartesian2} [result] A Cartesian2 to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding sphere from position in direction.
*
* @exception {DeveloperError} sphere is required.
* @exception {DeveloperError} position is required.
* @exception {DeveloperError} direction is required.
*/
BoundingSphere.getPlaneDistances = function(sphere, position, direction, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
if (!defined(position)) {
throw new DeveloperError('position is required.');
}
if (!defined(direction)) {
throw new DeveloperError('direction is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Interval();
}
var toCenter = Cartesian3.subtract(sphere.center, position, scratchCartesian3);
var proj = Cartesian3.multiplyByScalar(direction, Cartesian3.dot(direction, toCenter), scratchCartesian3);
var mag = Cartesian3.magnitude(proj);
result.start = mag - sphere.radius;
result.stop = mag + sphere.radius;
return result;
};
var projectTo2DNormalScratch = new Cartesian3();
var projectTo2DEastScratch = new Cartesian3();
var projectTo2DNorthScratch = new Cartesian3();
var projectTo2DWestScratch = new Cartesian3();
var projectTo2DSouthScratch = new Cartesian3();
var projectTo2DCartographicScratch = new Cartographic();
var projectTo2DPositionsScratch = new Array(8);
for (var n = 0; n < 8; ++n) {
projectTo2DPositionsScratch[n] = new Cartesian3();
}
var projectTo2DProjection = new GeographicProjection();
/**
* Creates a bounding sphere in 2D from a bounding sphere in 3D world coordinates.
* @memberof BoundingSphere
*
* @param {BoundingSphere} sphere The bounding sphere to transform to 2D.
* @param {Object} [projection=GeographicProjection] The projection to 2D.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} sphere is required.
*/
BoundingSphere.projectTo2D = function(sphere, projection, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(sphere)) {
throw new DeveloperError('sphere is required.');
}
//>>includeEnd('debug');
projection = defaultValue(projection, projectTo2DProjection);
var ellipsoid = projection.getEllipsoid();
var center = sphere.center;
var radius = sphere.radius;
var normal = ellipsoid.geodeticSurfaceNormal(center, projectTo2DNormalScratch);
var east = Cartesian3.cross(Cartesian3.UNIT_Z, normal, projectTo2DEastScratch);
Cartesian3.normalize(east, east);
var north = Cartesian3.cross(normal, east, projectTo2DNorthScratch);
Cartesian3.normalize(north, north);
Cartesian3.multiplyByScalar(normal, radius, normal);
Cartesian3.multiplyByScalar(north, radius, north);
Cartesian3.multiplyByScalar(east, radius, east);
var south = Cartesian3.negate(north, projectTo2DSouthScratch);
var west = Cartesian3.negate(east, projectTo2DWestScratch);
var positions = projectTo2DPositionsScratch;
// top NE corner
var corner = positions[0];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, east, corner);
// top NW corner
corner = positions[1];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, west, corner);
// top SW corner
corner = positions[2];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, west, corner);
// top SE corner
corner = positions[3];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, east, corner);
Cartesian3.negate(normal, normal);
// bottom NE corner
corner = positions[4];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, east, corner);
// bottom NW corner
corner = positions[5];
Cartesian3.add(normal, north, corner);
Cartesian3.add(corner, west, corner);
// bottom SW corner
corner = positions[6];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, west, corner);
// bottom SE corner
corner = positions[7];
Cartesian3.add(normal, south, corner);
Cartesian3.add(corner, east, corner);
var length = positions.length;
for (var i = 0; i < length; ++i) {
var position = positions[i];
Cartesian3.add(center, position, position);
var cartographic = ellipsoid.cartesianToCartographic(position, projectTo2DCartographicScratch);
projection.project(cartographic, position);
}
result = BoundingSphere.fromPoints(positions, result);
// swizzle center components
center = result.center;
var x = center.x;
var y = center.y;
var z = center.z;
center.x = z;
center.y = x;
center.z = y;
return result;
};
/**
* Compares the provided BoundingSphere componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
* @memberof BoundingSphere
*
* @param {BoundingSphere} [left] The first BoundingSphere.
* @param {BoundingSphere} [right] The second BoundingSphere.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
BoundingSphere.equals = function(left, right) {
return (left === right) ||
((defined(left)) &&
(defined(right)) &&
Cartesian3.equals(left.center, right.center) &&
left.radius === right.radius);
};
/**
* Duplicates this BoundingSphere instance.
* @memberof BoundingSphere
*
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.prototype.clone = function(result) {
return BoundingSphere.clone(this, result);
};
/**
* Computes a bounding sphere that contains both this bounding sphere and the argument sphere.
* @memberof BoundingSphere
*
* @param {BoundingSphere} right The sphere to enclose in this bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @exception {DeveloperError} sphere is required.
*/
BoundingSphere.prototype.union = function(right, result) {
return BoundingSphere.union(this, right, result);
};
/**
* Computes a bounding sphere that is sphere expanded to contain point.
* @memberof BoundingSphere
*
* @param {Cartesian3} point A point to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @exception {DeveloperError} point is required.
*/
BoundingSphere.prototype.expand = function(point, result) {
return BoundingSphere.expand(this, point, result);
};
/**
* Determines which side of a plane the sphere is located.
* @memberof BoundingSphere
*
* @param {Cartesian4} plane The coefficients of the plane in the for ax + by + cz + d = 0
* where the coefficients a, b, c, and d are the components x, y, z,
* and w of the {Cartesian4}, respectively.
* @returns {Intersect} {Intersect.INSIDE} if the entire sphere is on the side of the plane the normal