Skip to content

Latest commit

 

History

History
357 lines (245 loc) · 10.9 KB

reshaping.rst

File metadata and controls

357 lines (245 loc) · 10.9 KB
.. currentmodule:: pandas
.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   from pandas import *
   from pandas.core.reshape import *
   import pandas.util.testing as tm
   randn = np.random.randn
   np.set_printoptions(precision=4, suppress=True)
   from pandas.tools.tile import *

Reshaping and Pivot Tables

Reshaping by pivoting DataFrame objects

.. ipython::
   :suppress:

   In [1]: import pandas.util.testing as tm; tm.N = 3

   In [2]: def unpivot(frame):
      ...:         N, K = frame.shape
      ...:         data = {'value' : frame.values.ravel('F'),
      ...:                 'variable' : np.asarray(frame.columns).repeat(N),
      ...:                 'date' : np.tile(np.asarray(frame.index), K)}
      ...:         columns = ['date', 'variable', 'value']
      ...:         return DataFrame(data, columns=columns)
      ...:

   In [3]: df = unpivot(tm.makeTimeDataFrame())

Data is often stored in CSV files or databases in so-called "stacked" or "record" format:

.. ipython:: python

   df


For the curious here is how the above DataFrame was created:

import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
    N, K = frame.shape
    data = {'value' : frame.values.ravel('F'),
            'variable' : np.asarray(frame.columns).repeat(N),
            'date' : np.tile(np.asarray(frame.index), K)}
    return DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())

To select out everything for variable A we could do:

.. ipython:: python

   df[df['variable'] == 'A']

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:

.. ipython:: python

   df.pivot(index='date', columns='variable', values='value')

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting "pivoted" DataFrame will have :ref:`hierarchical columns <indexing.hierarchical>` whose topmost level indicates the respective value column:

.. ipython:: python

   df['value2'] = df['value'] * 2
   pivoted = df.pivot('date', 'variable')
   pivoted

You of course can then select subsets from the pivoted DataFrame:

.. ipython:: python

   pivoted['value2']

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

Reshaping by stacking and unstacking

Closely related to the pivot function are the related stack and unstack functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on :ref:`hierarchical indexing <indexing.hierarchical>`). Here are essentially what these functions do:

  • stack: "pivot" a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
  • unstack: inverse operation from stack: "pivot" a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.

The clearest way to explain is by example. Let's take a prior example data set from the hierarchical indexing section:

.. ipython:: python

   tuples = zip(*[['bar', 'bar', 'baz', 'baz',
                   'foo', 'foo', 'qux', 'qux'],
                  ['one', 'two', 'one', 'two',
                   'one', 'two', 'one', 'two']])
   index = MultiIndex.from_tuples(tuples, names=['first', 'second'])
   df = DataFrame(randn(8, 2), index=index, columns=['A', 'B'])
   df2 = df[:4]
   df2

The stack function "compresses" a level in the DataFrame's columns to produce either:

  • A Series, in the case of a simple column Index
  • A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

.. ipython:: python

   stacked = df2.stack()
   stacked

With a "stacked" DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

.. ipython:: python

   stacked.unstack()
   stacked.unstack(1)
   stacked.unstack(0)

If the indexes have names, you can use the level names instead of specifying the level numbers:

.. ipython:: python

   stacked.unstack('second')

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sortlevel, of course). Here is a more complex example:

.. ipython:: python

   columns = MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
                                     ('B', 'cat'), ('A', 'dog')],
                                    names=['exp', 'animal'])
   df = DataFrame(randn(8, 4), index=index, columns=columns)
   df2 = df.ix[[0, 1, 2, 4, 5, 7]]
   df2

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

.. ipython:: python

   df2.stack('exp')
   df2.stack('animal')

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

.. ipython:: python

   df[:3].unstack(0)
   df2.unstack(1)

Reshaping by Melt

The melt function found in pandas.core.reshape is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are "pivoted" to the row axis, leaving just two non-identifier columns, "variable" and "value".

For instance,

.. ipython:: python

   cheese = DataFrame({'first' : ['John', 'Mary'],
                       'last' : ['Doe', 'Bo'],
                       'height' : [5.5, 6.0],
                       'weight' : [130, 150]})
   cheese
   melt(cheese, id_vars=['first', 'last'])

Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

.. ipython:: python

   df
   df.stack().mean(1).unstack()

   # same result, another way
   df.groupby(level=1, axis=1).mean()

   df.stack().groupby(level=1).mean()

   df.mean().unstack(0)


Pivot tables and cross-tabulations

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. It takes a number of arguments

  • data: A DataFrame object
  • values: a column or a list of columns to aggregate
  • rows: list of columns to group by on the table rows
  • cols: list of columns to group by on the table columns
  • aggfunc: function to use for aggregation, defaulting to numpy.mean

Consider a data set like this:

.. ipython:: python

   df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
                   'B' : ['A', 'B', 'C'] * 8,
                   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                   'D' : np.random.randn(24),
                   'E' : np.random.randn(24)})
   df

We can produce pivot tables from this data very easily:

.. ipython:: python

   pivot_table(df, values='D', rows=['A', 'B'], cols=['C'])
   pivot_table(df, values='D', rows=['B'], cols=['A', 'C'], aggfunc=np.sum)
   pivot_table(df, values=['D','E'], rows=['B'], cols=['A', 'C'], aggfunc=np.sum)

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

.. ipython:: python

   pivot_table(df, rows=['A', 'B'], cols=['C'])

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

.. ipython:: python

   table = pivot_table(df, rows=['A', 'B'], cols=['C'])
   print table.to_string(na_rep='')

Note that pivot_table is also available as an instance method on DataFrame.

Cross tabulations

Use the crosstab function to compute a cross-tabulation of two (or more) factors. By default crosstab computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

  • rows: array-like, values to group by in the rows
  • cols: array-like, values to group by in the columns
  • values: array-like, optional, array of values to aggregate according to the factors
  • aggfunc: function, optional, If no values array is passed, computes a frequency table
  • rownames: sequence, default None, must match number of row arrays passed
  • colnames: sequence, default None, if passed, must match number of column arrays passed
  • margins: boolean, default False, Add row/column margins (subtotals)

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

For example:

.. ipython:: python

    foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
    a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
    b = np.array([one, one, two, one, two, one], dtype=object)
    c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
    crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])

Adding margins (partial aggregates)

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

.. ipython:: python

   df.pivot_table(rows=['A', 'B'], cols='C', margins=True, aggfunc=np.std)

Tiling

The cut function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

.. ipython:: python

   ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])


   cut(ages, bins=3)

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

.. ipython:: python

   cut(ages, bins=[0, 18, 35, 70])