-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHawk_Cell.py
356 lines (292 loc) · 9.42 KB
/
Hawk_Cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import pandas as pd
from scipy import stats
import os
import simpy
from random import Random
import numpy as np
from collections import namedtuple
import tempfile
import itertools as IT
from matplotlib import pyplot as plt
def ci(data, confidence=0.95):
data = 1.0 * np.array(data)
a = data[abs(data - np.mean(data)) < 1 * np.std(data)]
n = len(a)
m, se = np.mean(a), stats.sem(a)
h = se * stats.t._ppf((1 + confidence) / 2., n - 1)
return m, m - h, m + h
def mkdir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def unique(pth, sep=''):
def name_sequence():
count = IT.count()
yield ''
while True:
yield '{s}{n:d}'.format(s=sep, n=next(count))
orig = tempfile._name_sequence
with tempfile._once_lock:
tempfile._name_sequence = name_sequence()
pth = os.path.normpath(pth)
dirname, basename = os.path.split(pth)
filename, ext = os.path.splitext(basename)
fd, filename = tempfile.mkstemp(dir=dirname, prefix=filename, suffix=ext)
tempfile._name_sequence = orig
return filename
class Hawk:
class Container:
def __init__(self, **kwargs):
for i in kwargs:
setattr(self, i, kwargs[i])
def set(self, **kwargs):
for i in kwargs:
setattr(self, i, kwargs[i])
def __init__(self, dir, dir1):
self.dir = dir
self.dir1 = dir1
self.times = self.wrapper()
def rm_outliers(self, df):
df.insert(loc=len(df.columns), column='ZS', value=stats.zscore(a=df['MachiningTime']))
df = df[df['ZS'].abs() < 3]
df = df.drop(columns=['ZS'])
return df
def dtype_seconds(self, x):
try:
return x.dt.seconds
except AttributeError:
return x
def machining_time(self, df):
df_grouped = df.groupby(by='MainProgram')
store = {}
for i, j in df_grouped:
j = j.apply(pd.to_timedelta, errors='ignore', unit='s')
j = j.apply(lambda x: self.dtype_seconds(x))
j = self.rm_outliers(j)
mu = j['MachiningTime'].mean()
sigma = j['MachiningTime'].std()
store[str(i)] = Hawk.Container(mu=mu, sigma=sigma)
return store
def directory_crawler(self, path):
st = list()
for i in os.listdir(dir):
if '.csv' in i.lower() and 'machi' in i.lower():
j = '%s\%s' % (dir, i)
st.append(pd.read_csv(j))
df = pd.concat(st)
return df
def op_times(self, path):
df = pd.read_csv(r"C:\Users\nikhiso\PycharmProjects\Machining\Input\Hawk_Cell\Time.csv")
mean = df.mean().to_dict()
sd = df.std().to_dict()
store = {i: Hawk.Container(mu=mean[i], sigma=sd[i]) for i in mean}
return store
def wrapper(self):
a = self.machining_time(self.directory_crawler(dir))
b = self.op_times(self.dir1)
c = a.copy()
c.update(b)
del a, b
return c
class Product:
MASTER_COUNT = 0
MASTER_DATA = []
MASTER_DF = None
MASTER_INDEX = []
@classmethod
def MASTER_STATS(cls):
if Product.MASTER_DATA:
df = pd.DataFrame(Product.MASTER_DATA, columns=Product.MASTER_DATA[0].keys())
df.insert(loc=0, column='Count', value=Product.MASTER_COUNT)
df.index = np.arange(start=1, stop=Product.MASTER_COUNT + 1)
Product.MASTER_DF = df
return df
@classmethod
def clear(cls):
Product.MASTER_COUNT = 0
Product.MASTER_DATA = []
Product.MASTER_DF = None
Product.MASTER_INDEX = []
def __init__(self, name):
self.name = name
self.count = 0
self.data = []
self.flag = 0
def stats(self):
if self.data:
df = pd.DataFrame(self.data, columns=self.data[0].keys())
df.insert(loc=0, column='Count', value=self.count)
df.name = self.name
df.index = np.arange(start=1, stop=self.count + 1)
return df
def data_inp(self, row):
self.data.append(row)
self.count = self.count + 1
Product.MASTER_DATA.append(row)
Product.MASTER_COUNT = Product.MASTER_COUNT + 1
def shift(inp=float(1), opt='w'):
if opt.lower() == 'w':
return inp * 40 * 3600
elif opt.lower() == 's':
return inp * 8 * 3600
def request(resource, priority=None, delay=None):
if priority:
with resource.request(priority=priority) as req:
yield req
if delay:
yield env.timeout(delay)
else:
with resource.request() as req:
yield req
if delay:
yield env.timeout(delay)
def gauss(obj, correction=True):
delay = -1
while delay < 0 and correction:
delay = r.gauss(obj.mu, obj.sigma)
z = (delay - obj.mu) / obj.sigma
z = abs(z)
if z >= 0.5:
delay = -1
return delay
def cell(id, env, operator, times, product, machine):
x = gauss(times['//PRO_MEM/O475'])
t1 = env.now
leak_req = leak_test.request()
yield leak_req
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(10, 15))
operator.release(op_req)
yield env.timeout(gauss(times['LEAK_TEST']))
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(10, 15))
leak_test.release(leak_req)
operator.release(op_req)
t2 = env.now
sleeve_req = sleeve.request()
yield sleeve_req
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(10, 15))
operator.release(op_req)
yield env.timeout(gauss(times['SLEEVE']))
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(10, 15))
sleeve.release(sleeve_req)
operator.release(op_req)
t3 = env.now
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(5, 7))
yield env.timeout(gauss(times['BUILD']))
operator.release(op_req)
t4 = env.now
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(5, 7))
yield env.timeout(gauss(times['MACHINE_SCREW']))
operator.release(op_req)
t5 = env.now
req1 = yield machine.get(lambda machine: machine.op == 'stand_up')
op_req = operator.request()
yield op_req
yield env.timeout(gauss(times['OP1_OP2_CHANGEOVER']))
operator.release(op_req)
yield env.timeout(x)
op_req = operator.request()
yield op_req
yield env.timeout(gauss(times['OP1_OP2_CHANGEOVER']))
req2 = yield machine.get(lambda machine: machine.op == 'lay_down')
machine.put(req1)
operator.release(op_req)
yield env.timeout(x)
op_req = operator.request()
yield op_req
yield env.timeout(gauss(times['OP1_OP2_CHANGEOVER']))
machine.put(req2)
operator.release(op_req)
t6 = env.now
hone_req = hone.request()
yield hone_req
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(10, 12))
operator.release(op_req)
yield env.timeout(gauss(times['HONE']))
op_req = operator.request()
yield op_req
yield env.timeout(gauss(times['GAUGE']))
yield env.timeout(gauss(times['HONE_UNMOUNT']))
hone.release(hone_req)
operator.release(op_req)
t7 = env.now
op_req = operator.request()
yield op_req
yield env.timeout(gauss(times['BREAK']))
operator.release(op_req)
t8 = env.now
wash_req = wash.request()
yield wash_req
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(8, 10))
operator.release(op_req)
yield env.timeout(gauss(times['WASH']))
op_req = operator.request()
yield op_req
yield env.timeout(r.uniform(15, 18))
wash.release(wash_req)
operator.release(op_req)
t9 = env.now
row = {'ID': id,
'Total': t9 - t1,
't1': t1,
't2': t2,
't3': t3,
't4': t4,
't5': t5,
't6': t6,
't7': t7,
't8': t8,
't9': t9}
# print(id, row)
product.data_inp(row)
def wrapper(env):
i = 0
while True:
env.process(cell(i + 1, env, operator, times, Product('Hawk'), a61))
i = i + 1
yield env.timeout(r.uniform(1300, 1500))
# yield env.timeout(r.uniform(750, 1000))
pd.set_option('display.width', 1000)
pd.set_option("display.max_columns", 100)
a61_store = namedtuple('A61', 'op')
dir = r"C:\Users\nikhiso\PycharmProjects\Machining\Input\Hawk_Cell\A61\Result"
dir1 = r"C:\Users\nikhiso\PycharmProjects\Machining\Input\Hawk_Cell\Time.csv"
r = Random()
times = Hawk(dir, dir1).times
store = []
for i in range(1000):
env = simpy.Environment()
operator = simpy.PriorityResource(env, capacity=1)
leak_test = simpy.PriorityResource(env, capacity=1)
sleeve = simpy.PriorityResource(env, capacity=1)
a61 = simpy.FilterStore(env, capacity=2)
a61.items = [a61_store(op='stand_up'), a61_store(op='lay_down')]
hone = simpy.PriorityResource(env, capacity=1)
wash = simpy.PriorityResource(env, capacity=2)
env.process(wrapper(env))
env.run(until=shift(inp=0.2))
df = Product.MASTER_STATS()
j = 0
try:
j = df['Count'].mean()
store.append(j)
except TypeError:
pass
Product.clear()
del env, operator, leak_test, sleeve, a61, hone, wash, df, j
mid, lower, upper = ci(store)
print('%.2f - %.2f - %.2f' % (lower, mid, upper))