forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Host.cpp
1464 lines (1335 loc) · 49.2 KB
/
Host.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Host.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <string.h>
// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef _WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/machine.h>
#endif
#define DEBUG_TYPE "host-detection"
//===----------------------------------------------------------------------===//
//
// Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//
using namespace llvm;
static std::unique_ptr<llvm::MemoryBuffer>
LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
if (std::error_code EC = Text.getError()) {
llvm::errs() << "Can't read "
<< "/proc/cpuinfo: " << EC.message() << "\n";
return nullptr;
}
return std::move(*Text);
}
StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
// and so we must use an operating-system interface to determine the current
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
const char *generic = "generic";
// The cpu line is second (after the 'processor: 0' line), so if this
// buffer is too small then something has changed (or is wrong).
StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
StringRef::const_iterator CIP = CPUInfoStart;
StringRef::const_iterator CPUStart = 0;
size_t CPULen = 0;
// We need to find the first line which starts with cpu, spaces, and a colon.
// After the colon, there may be some additional spaces and then the cpu type.
while (CIP < CPUInfoEnd && CPUStart == 0) {
if (CIP < CPUInfoEnd && *CIP == '\n')
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'c') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'p') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'u') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd && *CIP == ':') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd) {
CPUStart = CIP;
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
*CIP != ',' && *CIP != '\n'))
++CIP;
CPULen = CIP - CPUStart;
}
}
}
}
}
if (CPUStart == 0)
while (CIP < CPUInfoEnd && *CIP != '\n')
++CIP;
}
if (CPUStart == 0)
return generic;
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
.Case("604e", "604e")
.Case("604", "604")
.Case("7400", "7400")
.Case("7410", "7400")
.Case("7447", "7400")
.Case("7455", "7450")
.Case("G4", "g4")
.Case("POWER4", "970")
.Case("PPC970FX", "970")
.Case("PPC970MP", "970")
.Case("G5", "g5")
.Case("POWER5", "g5")
.Case("A2", "a2")
.Case("POWER6", "pwr6")
.Case("POWER7", "pwr7")
.Case("POWER8", "pwr8")
.Case("POWER8E", "pwr8")
.Case("POWER8NVL", "pwr8")
.Case("POWER9", "pwr9")
.Default(generic);
}
StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
// The cpuid register on arm is not accessible from user space. On Linux,
// it is exposed through the /proc/cpuinfo file.
// Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
// in all cases.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU implementer line.
StringRef Implementer;
StringRef Hardware;
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU implementer"))
Implementer = Lines[I].substr(15).ltrim("\t :");
if (Lines[I].startswith("Hardware"))
Hardware = Lines[I].substr(8).ltrim("\t :");
}
if (Implementer == "0x41") { // ARM Ltd.
// MSM8992/8994 may give cpu part for the core that the kernel is running on,
// which is undeterministic and wrong. Always return cortex-a53 for these SoC.
if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
return "cortex-a53";
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x926", "arm926ej-s")
.Case("0xb02", "mpcore")
.Case("0xb36", "arm1136j-s")
.Case("0xb56", "arm1156t2-s")
.Case("0xb76", "arm1176jz-s")
.Case("0xc08", "cortex-a8")
.Case("0xc09", "cortex-a9")
.Case("0xc0f", "cortex-a15")
.Case("0xc20", "cortex-m0")
.Case("0xc23", "cortex-m3")
.Case("0xc24", "cortex-m4")
.Case("0xd04", "cortex-a35")
.Case("0xd03", "cortex-a53")
.Case("0xd07", "cortex-a57")
.Case("0xd08", "cortex-a72")
.Case("0xd09", "cortex-a73")
.Default("generic");
}
if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU part")) {
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x516", "thunderx2t99")
.Case("0x0516", "thunderx2t99")
.Case("0xaf", "thunderx2t99")
.Case("0x0af", "thunderx2t99")
.Case("0xa1", "thunderxt88")
.Case("0x0a1", "thunderxt88")
.Default("generic");
}
}
}
if (Implementer == "0x48") // HiSilicon Technologies, Inc.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0xd01", "tsv110")
.Default("generic");
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x06f", "krait") // APQ8064
.Case("0x201", "kryo")
.Case("0x205", "kryo")
.Case("0x211", "kryo")
.Case("0x800", "cortex-a73")
.Case("0x801", "cortex-a73")
.Case("0xc00", "falkor")
.Case("0xc01", "saphira")
.Default("generic");
if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
// The Exynos chips have a convoluted ID scheme that doesn't seem to follow
// any predictive pattern across variants and parts.
unsigned Variant = 0, Part = 0;
// Look for the CPU variant line, whose value is a 1 digit hexadecimal
// number, corresponding to the Variant bits in the CP15/C0 register.
for (auto I : Lines)
if (I.consume_front("CPU variant"))
I.ltrim("\t :").getAsInteger(0, Variant);
// Look for the CPU part line, whose value is a 3 digit hexadecimal
// number, corresponding to the PartNum bits in the CP15/C0 register.
for (auto I : Lines)
if (I.consume_front("CPU part"))
I.ltrim("\t :").getAsInteger(0, Part);
unsigned Exynos = (Variant << 12) | Part;
switch (Exynos) {
default:
// Default by falling through to Exynos M1.
LLVM_FALLTHROUGH;
case 0x1001:
return "exynos-m1";
case 0x4001:
return "exynos-m2";
}
}
return "generic";
}
StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
// The "processor 0:" line comes after a fair amount of other information,
// including a cache breakdown, but this should be plenty.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU features.
SmallVector<StringRef, 32> CPUFeatures;
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("features")) {
size_t Pos = Lines[I].find(":");
if (Pos != StringRef::npos) {
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
break;
}
}
// We need to check for the presence of vector support independently of
// the machine type, since we may only use the vector register set when
// supported by the kernel (and hypervisor).
bool HaveVectorSupport = false;
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
if (CPUFeatures[I] == "vx")
HaveVectorSupport = true;
}
// Now check the processor machine type.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("processor ")) {
size_t Pos = Lines[I].find("machine = ");
if (Pos != StringRef::npos) {
Pos += sizeof("machine = ") - 1;
unsigned int Id;
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
if (Id >= 3906 && HaveVectorSupport)
return "z14";
if (Id >= 2964 && HaveVectorSupport)
return "z13";
if (Id >= 2827)
return "zEC12";
if (Id >= 2817)
return "z196";
}
}
break;
}
}
return "generic";
}
StringRef sys::detail::getHostCPUNameForBPF() {
#if !defined(__linux__) || !defined(__x86_64__)
return "generic";
#else
uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_EXIT_INSN() */
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
/* BPF_EXIT_INSN() */
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
struct bpf_prog_load_attr {
uint32_t prog_type;
uint32_t insn_cnt;
uint64_t insns;
uint64_t license;
uint32_t log_level;
uint32_t log_size;
uint64_t log_buf;
uint32_t kern_version;
uint32_t prog_flags;
} attr = {};
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
attr.insn_cnt = 5;
attr.insns = (uint64_t)v3_insns;
attr.license = (uint64_t)"DUMMY";
int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
sizeof(attr));
if (fd >= 0) {
close(fd);
return "v3";
}
/* Clear the whole attr in case its content changed by syscall. */
memset(&attr, 0, sizeof(attr));
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
attr.insn_cnt = 5;
attr.insns = (uint64_t)v2_insns;
attr.license = (uint64_t)"DUMMY";
fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
if (fd >= 0) {
close(fd);
return "v2";
}
return "v1";
#endif
}
#if defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
enum VendorSignatures {
SIG_INTEL = 0x756e6547 /* Genu */,
SIG_AMD = 0x68747541 /* Auth */
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
// Removal of cpuid.h header motivated by PR30384
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
// or test-suite, but are used in external projects e.g. libstdcxx
static bool isCpuIdSupported() {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static void
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
unsigned Brand_id, unsigned Features,
unsigned Features2, unsigned Features3,
unsigned *Type, unsigned *Subtype) {
if (Brand_id != 0)
return;
switch (Family) {
case 3:
*Type = X86::INTEL_i386;
break;
case 4:
*Type = X86::INTEL_i486;
break;
case 5:
if (Features & (1 << X86::FEATURE_MMX)) {
*Type = X86::INTEL_PENTIUM_MMX;
break;
}
*Type = X86::INTEL_PENTIUM;
break;
case 6:
switch (Model) {
case 0x01: // Pentium Pro processor
*Type = X86::INTEL_PENTIUM_PRO;
break;
case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
// model 03
case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
// model 05, and Intel Celeron processor, model 05
case 0x06: // Celeron processor, model 06
*Type = X86::INTEL_PENTIUM_II;
break;
case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
// processor, model 07
case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
// model 08, and Celeron processor, model 08
case 0x0a: // Pentium III Xeon processor, model 0Ah
case 0x0b: // Pentium III processor, model 0Bh
*Type = X86::INTEL_PENTIUM_III;
break;
case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
// 0Dh. All processors are manufactured using the 90 nm process.
case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
// Integrated Processor with Intel QuickAssist Technology
*Type = X86::INTEL_PENTIUM_M;
break;
case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
// 0Eh. All processors are manufactured using the 65 nm process.
*Type = X86::INTEL_CORE_DUO;
break; // yonah
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
*Type = X86::INTEL_CORE2; // "core2"
*Subtype = X86::INTEL_CORE2_65;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
*Type = X86::INTEL_CORE2; // "penryn"
*Subtype = X86::INTEL_CORE2_45;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
*Type = X86::INTEL_COREI7; // "nehalem"
*Subtype = X86::INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
*Type = X86::INTEL_COREI7; // "westmere"
*Subtype = X86::INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
*Type = X86::INTEL_COREI7; //"sandybridge"
*Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
*Type = X86::INTEL_COREI7; // "ivybridge"
*Subtype = X86::INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
*Type = X86::INTEL_COREI7; // "haswell"
*Subtype = X86::INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
*Type = X86::INTEL_COREI7; // "broadwell"
*Subtype = X86::INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
*Type = X86::INTEL_COREI7; // "skylake"
*Subtype = X86::INTEL_COREI7_SKYLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
break;
// Cannonlake:
case 0x66:
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
*Type = X86::INTEL_BONNELL;
break; // "bonnell"
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
*Type = X86::INTEL_SILVERMONT;
break; // "silvermont"
// Goldmont:
case 0x5c: // Apollo Lake
case 0x5f: // Denverton
*Type = X86::INTEL_GOLDMONT;
break; // "goldmont"
case 0x7a:
*Type = X86::INTEL_GOLDMONT_PLUS;
break;
case 0x57:
*Type = X86::INTEL_KNL; // knl
break;
case 0x85:
*Type = X86::INTEL_KNM; // knm
break;
default: // Unknown family 6 CPU, try to guess.
if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
break;
}
if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_CANNONLAKE;
break;
}
if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_CASCADELAKE;
break;
}
if (Features & (1 << X86::FEATURE_AVX512VL)) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
break;
}
if (Features & (1 << X86::FEATURE_AVX512ER)) {
*Type = X86::INTEL_KNL; // knl
break;
}
if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
*Type = X86::INTEL_GOLDMONT;
} else {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SKYLAKE;
}
break;
}
if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_BROADWELL;
break;
}
if (Features & (1 << X86::FEATURE_AVX2)) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_HASWELL;
break;
}
if (Features & (1 << X86::FEATURE_AVX)) {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
break;
}
if (Features & (1 << X86::FEATURE_SSE4_2)) {
if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
*Type = X86::INTEL_SILVERMONT;
} else {
*Type = X86::INTEL_COREI7;
*Subtype = X86::INTEL_COREI7_NEHALEM;
}
break;
}
if (Features & (1 << X86::FEATURE_SSE4_1)) {
*Type = X86::INTEL_CORE2; // "penryn"
*Subtype = X86::INTEL_CORE2_45;
break;
}
if (Features & (1 << X86::FEATURE_SSSE3)) {
if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
*Type = X86::INTEL_BONNELL; // "bonnell"
} else {
*Type = X86::INTEL_CORE2; // "core2"
*Subtype = X86::INTEL_CORE2_65;
}
break;
}
if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
*Type = X86::INTEL_CORE2; // "core2"
*Subtype = X86::INTEL_CORE2_65;
break;
}
if (Features & (1 << X86::FEATURE_SSE3)) {
*Type = X86::INTEL_CORE_DUO;
break;
}
if (Features & (1 << X86::FEATURE_SSE2)) {
*Type = X86::INTEL_PENTIUM_M;
break;
}
if (Features & (1 << X86::FEATURE_SSE)) {
*Type = X86::INTEL_PENTIUM_III;
break;
}
if (Features & (1 << X86::FEATURE_MMX)) {
*Type = X86::INTEL_PENTIUM_II;
break;
}
*Type = X86::INTEL_PENTIUM_PRO;
break;
}
break;
case 15: {
if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
*Type = X86::INTEL_NOCONA;
break;
}
if (Features & (1 << X86::FEATURE_SSE3)) {
*Type = X86::INTEL_PRESCOTT;
break;
}
*Type = X86::INTEL_PENTIUM_IV;
break;
}
default:
break; /*"generic"*/
}
}
static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
unsigned Features, unsigned *Type,
unsigned *Subtype) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
*Type = X86::AMD_i486;
break;
case 5:
*Type = X86::AMDPENTIUM;
switch (Model) {
case 6:
case 7:
*Subtype = X86::AMDPENTIUM_K6;
break; // "k6"
case 8:
*Subtype = X86::AMDPENTIUM_K62;
break; // "k6-2"
case 9:
case 13:
*Subtype = X86::AMDPENTIUM_K63;
break; // "k6-3"
case 10:
*Subtype = X86::AMDPENTIUM_GEODE;
break; // "geode"
}
break;
case 6:
if (Features & (1 << X86::FEATURE_SSE)) {
*Type = X86::AMD_ATHLON_XP;
break; // "athlon-xp"
}
*Type = X86::AMD_ATHLON;
break; // "athlon"
case 15:
if (Features & (1 << X86::FEATURE_SSE3)) {
*Type = X86::AMD_K8SSE3;
break; // "k8-sse3"
}
*Type = X86::AMD_K8;
break; // "k8"
case 16:
*Type = X86::AMDFAM10H; // "amdfam10"
switch (Model) {
case 2:
*Subtype = X86::AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = X86::AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = X86::AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
*Type = X86::AMD_BTVER1;
break; // "btver1";
case 21:
*Type = X86::AMDFAM15H;
if (Model >= 0x60 && Model <= 0x7f) {
*Subtype = X86::AMDFAM15H_BDVER4;
break; // "bdver4"; 60h-7Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
*Subtype = X86::AMDFAM15H_BDVER3;
break; // "bdver3"; 30h-3Fh: Steamroller
}
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
*Subtype = X86::AMDFAM15H_BDVER2;
break; // "bdver2"; 02h, 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = X86::AMDFAM15H_BDVER1;
break; // "bdver1"; 00h-0Fh: Bulldozer
}
break;
case 22:
*Type = X86::AMD_BTVER2;
break; // "btver2"
case 23:
*Type = X86::AMDFAM17H;
*Subtype = X86::AMDFAM17H_ZNVER1;
break;
default:
break; // "generic"
}
}
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned *FeaturesOut, unsigned *Features2Out,
unsigned *Features3Out) {
unsigned Features = 0;
unsigned Features2 = 0;
unsigned Features3 = 0;
unsigned EAX, EBX;
auto setFeature = [&](unsigned F) {
if (F < 32)
Features |= 1U << (F & 0x1f);
else if (F < 64)
Features2 |= 1U << ((F - 32) & 0x1f);
else if (F < 96)
Features3 |= 1U << ((F - 64) & 0x1f);
else
llvm_unreachable("Unexpected FeatureBit");
};
if ((EDX >> 15) & 1)
setFeature(X86::FEATURE_CMOV);
if ((EDX >> 23) & 1)
setFeature(X86::FEATURE_MMX);
if ((EDX >> 25) & 1)
setFeature(X86::FEATURE_SSE);
if ((EDX >> 26) & 1)
setFeature(X86::FEATURE_SSE2);
if ((ECX >> 0) & 1)
setFeature(X86::FEATURE_SSE3);
if ((ECX >> 1) & 1)
setFeature(X86::FEATURE_PCLMUL);
if ((ECX >> 9) & 1)
setFeature(X86::FEATURE_SSSE3);
if ((ECX >> 12) & 1)
setFeature(X86::FEATURE_FMA);
if ((ECX >> 19) & 1)
setFeature(X86::FEATURE_SSE4_1);
if ((ECX >> 20) & 1)
setFeature(X86::FEATURE_SSE4_2);
if ((ECX >> 23) & 1)
setFeature(X86::FEATURE_POPCNT);
if ((ECX >> 25) & 1)
setFeature(X86::FEATURE_AES);
if ((ECX >> 22) & 1)
setFeature(X86::FEATURE_MOVBE);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
if (HasAVX)
setFeature(X86::FEATURE_AVX);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7 && ((EBX >> 3) & 1))
setFeature(X86::FEATURE_BMI);
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
setFeature(X86::FEATURE_AVX2);
if (HasLeaf7 && ((EBX >> 9) & 1))
setFeature(X86::FEATURE_BMI2);
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512F);
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
setFeature(X86::FEATURE_AVX512DQ);
if (HasLeaf7 && ((EBX >> 19) & 1))
setFeature(X86::FEATURE_ADX);
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)