-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathsave_movie.py
44 lines (35 loc) · 1.08 KB
/
save_movie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Create movie from MEG inverse solution
=======================================
Data were computed using mne-python (http://martinos.org/mne)
"""
import os
import numpy as np
from surfer import Brain
from surfer.io import read_stc
print(__doc__)
"""
create Brain object for visualization
"""
brain = Brain('fsaverage', 'split', 'inflated', size=(800, 400))
"""
read and display MNE dSPM inverse solution
"""
stc_fname = os.path.join('example_data', 'meg_source_estimate-%s.stc')
for hemi in ['lh', 'rh']:
stc = read_stc(stc_fname % hemi)
data = stc['data']
times = np.arange(data.shape[1]) * stc['tstep'] + stc['tmin']
brain.add_data(data, colormap='hot', vertices=stc['vertices'],
smoothing_steps=10, time=times, hemi=hemi,
time_label=lambda t: '%s ms' % int(round(t * 1e3)))
"""
scale colormap
"""
brain.scale_data_colormap(fmin=13, fmid=18, fmax=22, transparent=True)
"""
Save a movie. Use a large value for time_dilation because the sample stc only
covers 30 ms.
"""
brain.save_movie('example_current.mov', time_dilation=30)
brain.close()