-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathkernel.nit
1106 lines (977 loc) · 26.8 KB
/
kernel.nit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is part of NIT ( http://www.nitlanguage.org ).
#
# Copyright 2004-2008 Jean Privat <[email protected]>
# Copyright 2006-2008 Floréal Morandat <[email protected]>
#
# This file is free software, which comes along with NIT. This software is
# distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. You can modify it is you want, provided this header
# is kept unaltered, and a notification of the changes is added.
# You are allowed to redistribute it and sell it, alone or is a part of
# another product.
# Most basic classes and methods.
#
# This module is the root of the module hierarchy.
# It provides a very minimal set of classes and services used as a
# foundation to define other classes and methods.
module kernel
import end # Mark this module is a top level one. (must be only one)
in "C" `{
#include <stdlib.h>
#include <errno.h>
`}
###############################################################################
# System Classes #
###############################################################################
# The root of the class hierarchy.
#
# Each other class implicitly specializes Object,
# therefore the services of Object are inherited by every other class and are usable
# on each value, including primitive types like integers (`Int`), strings (`String`) and arrays (`Array`).
#
# Note that `nullable Object`, not `Object`, is the root of the type hierarchy
# since the special value `null` is not considered as an instance of Object.
interface Object
# Type of this instance, automatically specialized in every class
#
# A common use case of the virtual type `SELF` is to type an attribute and
# store another instance of the same type as `self`. It can also be used as as
# return type to a method producing a copy of `self` or returning an instance
# expected to be the exact same type as self.
#
# This virtual type must be used with caution as it can hinder specialization.
# In fact, it imposes strict restrictions on all sub-classes and their usage.
# For example, using `SELF` as a return type of a method `foo`
# forces all subclasses to ensure that `foo` returns the correct and updated
# type.
# A dangerous usage take the form of a method typed by `SELF` which creates
# and returns a new instance.
# If not correctly specialized, this method would break when invoked on a
# sub-class.
#
# A general rule for safe usage of `SELF` is to ensure that inputs typed
# `SELF` are stored in attributes typed `SELF` and returned by methods typed
# `SELF`, pretty much the same things as you would do with parameter types.
type SELF: Object
# An internal hash code for the object based on its identity.
#
# Unless specific code, you should not use this method but
# use `hash` instead.
#
# As its name hints it, the internal hash code, is used internally
# to provide a hash value.
# It is also used by the `inspect` method to loosely identify objects
# and helps debugging.
#
# ~~~
# var a = "Hello"
# var b = a
# assert a.object_id == b.object_id
# ~~~
#
# The specific details of the internal hash code it let to the specific
# engine. The rules are the following:
#
# * The `object_id` MUST be invariant for the whole life of the object.
# * Two living instances of the same classes SHOULD NOT share the same `object_id`.
# * Two instances of different classes MIGHT share the same `object_id`.
# * The `object_id` of a garbage-collected instance MIGHT be reused by new instances.
# * The `object_id` of an object MIGHT be non constant across different executions.
#
# For instance, the `nitc` compiler uses the address of the object in memory
# as its `object_id`.
#
# TODO rename in something like `internal_hash_code`
fun object_id: Int is intern
# Return true if `self` and `other` have the same dynamic type.
#
# ~~~
# assert 1.is_same_type(2)
# assert "Hello".is_same_type("World")
# assert not "Hello".is_same_type(2)
# ~~~
#
# The method returns false if the dynamic type of `other` is a subtype of the dynamic type of `self`
# (or the other way around).
#
# Unless specific code, you should not use this method because it is inconsistent
# with the fact that a subclass can be used in lieu of a superclass.
fun is_same_type(other: Object): Bool is intern
# Return true if `self` and `other` are the same instance (i.e. same identity).
#
# ~~~
# var a = new Buffer
# var b = a
# var c = new Buffer
# assert a.is_same_instance(b)
# assert not a.is_same_instance(c)
# assert a == c # because both buffers are empty
# ~~~
#
# Obviously, the identity of an object is preserved even if the object is mutated.
#
# ~~~
# var x = [1]
# var y = x
# x.add 2
# assert x.is_same_instance(y)
# ~~~
#
# Unless specific code, you should use `==` instead of `is_same_instance` because
# most of the time is it the semantic (and user-defined) comparison that make sense.
#
# Moreover, relying on `is_same_instance` on objects you do not control
# might have unexpected effects when libraries reuse objects or intern them.
fun is_same_instance(other: nullable Object): Bool is intern
# Have `self` and `other` the same value?
#
# ~~~
# assert 1 + 1 == 2
# assert not 1 == "1"
# assert 1.to_s == "1"
# ~~~
#
# The exact meaning of *same value* is left to the subclasses.
# Implicitly, the default implementation, is `is_same_instance`.
#
# The laws of `==` are the following:
#
# * reflexivity `a.is_same_instance(b) implies a == b`
# * symmetry: `(a == b) == (b == a)`
# * transitivity: `(a == b) and (b == c) implies (a == c)`
#
# `==` might not be constant on some objects overtime because of their evolution.
#
# ~~~
# var a = [1]
# var b = [1]
# var c = [1,2]
# assert a == b and not a == c
# a.add 2
# assert not a == b and a == c
# ~~~
#
# Lastly, `==` is highly linked with `hash` and a specific redefinition of `==` should
# usually be associated with a specific redefinition of `hash`.
#
# ENSURE `result implies self.hash == other.hash`
fun ==(other: nullable Object): Bool do return self.is_same_instance(other)
# Have `self` and `other` different values?
#
# `!=` is equivalent with `not ==`.
fun !=(other: nullable Object): Bool do return not (self == other)
# Display self on stdout (debug only).
#
# This method MUST not be used by programs, it is here for debugging
# only and can be removed without any notice.
#
# TODO: rename to avoid blocking a good identifier like `output`.
fun output
do
'<'.output
object_id.output
'>'.output
end
# Display class name on stdout (debug only).
#
# This method MUST not be used by programs, it is here for debugging
# only and can be removed without any notice.
#
# TODO: rename to avoid blocking a good identifier like `output`.
fun output_class_name is intern
# The hash code of the object.
#
# The hash code is used in many data-structures and algorithms to identify objects that might be equal.
# Therefore, the precise semantic of `hash` is highly linked with the semantic of `==`
# and the only law of `hash` is that `a == b implies a.hash == b.hash`.
#
# ~~~
# assert (1+1).hash == 2.hash
# assert 1.to_s.hash == "1".hash
# ~~~
#
# `hash` (like `==`) might not be constant on some objects over time because of their evolution.
#
# ~~~
# var a = [1]
# var b = [1]
# var c = [1,2]
# assert a.hash == b.hash
# a.add 2
# assert a.hash == c.hash
# # There is a very high probability that `b.hash != c.hash`
# ~~~
#
# A specific redefinition of `==` should usually be associated with a specific redefinition of `hash`.
# Note that, unfortunately, a correct definition of `hash` that is lawful with `==` is sometime tricky
# and a cause of bugs.
#
# Without redefinition, `hash` is based on the `object_id` of the instance.
fun hash: Int do return object_id
end
# The main class of the program.
#
# `Sys` is a singleton class, its only instance is accessible from everywhere with `sys`.
#
# Because of this, methods that should be accessible from everywhere, like `print` or `exit`,
# are defined in `Sys`.
# Moreover, unless there is an ambiguity with `self`, the receiver of a call to these methods is implicitly `sys`.
# Basically it means that the two following instructions are equivalent.
#
# ~~~nit
# print "Hello World"
# sys.print "Hello World"
# ~~~
#
# ## Methods Implicitly Defined in Sys
#
# `Sys` is the class where are defined top-level methods,
# i.e. those defined outside of any class like in a procedural language.
# Basically it means that
#
# ~~~nitish
# redef class Sys
# fun foo do print "hello"
# end
# ~~~
#
# is equivalent with
#
# ~~~nitish
# fun foo print "hello"
# ~~~
#
# As a corollary, in a top-level method, `self` (the current receiver) is always `sys`.
class Sys
# The main method of a program.
#
# In a module, the instructions defined outside any classes or methods
# (usually called the *main* of the module) is
# an implicit definition of this `main` method.
# Basically it means that the following program
#
# ~~~nit
# print "Hello World"
# ~~~
#
# is equivalent with
#
# ~~~nit
# redef class Sys
# redef fun main do
# print "Hello World"
# end
# end
# ~~~
fun main do end
# The entry point for the execution of the whole program.
#
# When a program starts, the following implicit sequence of instructions is executed
#
# ~~~nitish
# sys = new Sys
# sys.run
# ~~~
#
# Whereas the job of the `run` method is just to execute `main`.
#
# The only reason of the existence of `run` is to allow modules to refine it
# and inject specific work before or after the main part.
fun run do main
# Number of the last error
fun errno: Int `{ return errno; `}
end
# Quit the program with a specific return code
fun exit(exit_value: Int) is intern
# Return the global sys object, the only instance of the `Sys` class.
fun sys: Sys is intern
###############################################################################
# Abstract Classes #
###############################################################################
# The ancestor of class where objects are in a total order.
# In order to work, the method '<' has to be redefined.
interface Comparable
# What `self` can be compared to?
type OTHER: Comparable
# Is `self` lesser than `other`?
fun <(other: OTHER): Bool is abstract
# not `other` < `self`
# Note, the implementation must ensure that: `(x<=y) == (x<y or x==y)`
fun <=(other: OTHER): Bool do return not other < self
# not `self` < `other`
# Note, the implementation must ensure that: `(x>=y) == (x>y or x==y)`
fun >=(other: OTHER): Bool do return not self < other
# `other` < `self`
fun >(other: OTHER): Bool do return other < self
# -1 if <, +1 if > and 0 otherwise
# Note, the implementation must ensure that: (x<=>y == 0) == (x==y)
fun <=>(other: OTHER): Int
do
if self < other then
return -1
else if other < self then
return 1
else
return 0
end
end
# c <= self <= d
fun is_between(c: OTHER, d: OTHER): Bool
do
return c <= self and self <= d
end
# The maximum between `self` and `other` (prefers `self` if equals).
fun max(other: OTHER): OTHER
do
if self < other then
return other
else
return self
end
end
# The minimum between `self` and `c` (prefer `self` if equals)
fun min(c: OTHER): OTHER
do
if c < self then
return c
else
return self
end
end
end
# Discrete total orders.
interface Discrete
super Comparable
redef type OTHER: Discrete
# The next element.
fun successor(i: Int): OTHER is abstract
# The previous element.
fun predecessor(i: Int): OTHER is abstract
# The distance between self and d.
#
# assert 10.distance(15) == 5
# assert 'Z'.distance('A') == 25
fun distance(d: OTHER): Int
do
var cursor: OTHER
var stop: OTHER
if self < d then
cursor = self
stop = d
else if self > d then
cursor = d
stop = self
else
return 0
end
var nb = 0
while cursor < stop do
cursor = cursor.successor(1)
nb += 1
end
return nb
end
end
# Something that can be cloned
#
# This interface introduces the `clone` method used to duplicate an instance
# Its specific semantic is left to the subclasses.
interface Cloneable
# Duplicate `self`
#
# The specific semantic of this method is left to the subclasses;
# Especially, if (and how) attributes are cloned (depth vs. shallow).
#
# As a rule of thumb, the principle of least astonishment should
# be used to guide the semantic.
#
# Note that as the returned clone depends on the semantic,
# the `==` method, if redefined, should ensure the equality
# between an object and its clone.
fun clone: SELF is abstract
end
# A numeric value supporting mathematical operations
interface Numeric
super Comparable
redef type OTHER: Numeric
# Addition of `self` with `i`
fun +(i: OTHER): OTHER is abstract
# Substraction of `i` from `self`
fun -(i: OTHER): OTHER is abstract
# Inverse of `self`
fun -: OTHER is abstract
# Multiplication of `self` with `i`
fun *(i: OTHER): OTHER is abstract
# Division of `self` with `i`
fun /(i: OTHER): OTHER is abstract
# The integer part of `self`.
#
# assert (0.0).to_i == 0
# assert (0.9).to_i == 0
# assert (-0.9).to_i == 0
# assert (9.9).to_i == 9
# assert (-9.9).to_i == -9
fun to_i: Int is abstract
# The float equivalent of `self`
#
# assert 5.to_f == 5.0
# assert 5.to_f != 5 # Float and Int are not equals
fun to_f: Float is abstract
# The byte equivalent of `self`
#
# assert (-1).to_b == 0xFF.to_b
# assert (1.9).to_b == 1.to_b
fun to_b: Byte is abstract
# Is this the value of zero in its domain?
fun is_zero: Bool do return self == zero
# The value of zero in the domain of `self`
fun zero: OTHER is abstract
# The value of `val` in the domain of `self`
#
# assert 1.0.value_of(2) == 2.0
# assert 1.0.value_of(2.0) == 2.0
# assert 1.value_of(2) == 2
# assert 1.value_of(2.0) == 2
fun value_of(val: Numeric): OTHER is abstract
end
###############################################################################
# Native classes #
###############################################################################
# Native Booleans.
# `true` and `false` are the only instances.
#
# Boolean are manipulated trough three special operators:
# `and`, `or`, `not`.
#
# Booleans are mainly used by conditional statement and loops.
universal Bool
redef fun object_id is intern
redef fun ==(b) is intern
redef fun !=(b) is intern
redef fun output is intern
redef fun hash do return to_i
# 1 if true and 0 if false
fun to_i: Int
do
if self then
return 1
else
return 0
end
end
end
# Native floating point numbers.
# Corresponds to C float.
universal Float
super Numeric
redef type OTHER: Float
redef fun object_id is intern
redef fun ==(i) is intern
redef fun !=(i) is intern
redef fun output is intern
redef fun <=(i) is intern
redef fun <(i) is intern
redef fun >=(i) is intern
redef fun >(i) is intern
redef fun +(i) is intern
redef fun - is intern
redef fun -(i) is intern
redef fun *(i) is intern
redef fun /(i) is intern
redef fun to_i is intern
redef fun to_f do return self
redef fun to_b is intern
redef fun zero do return 0.0
redef fun value_of(val) do return val.to_f
redef fun <=>(other)
do
if self < other then
return -1
else if other < self then
return 1
else
return 0
end
end
redef fun is_between(c, d)
do
if self < c or d < self then
return false
else
return true
end
end
# Compare float numbers with a given precision.
#
# Because of the loss of precision in floating numbers,
# the `==` method is often not the best way to compare them.
#
# ~~~
# assert 0.01.is_approx(0.02, 0.1) == true
# assert 0.01.is_approx(0.02, 0.001) == false
# ~~~
fun is_approx(other, precision: Float): Bool
do
assert precision >= 0.0
return self <= other + precision and self >= other - precision
end
redef fun max(other)
do
if self < other then
return other
else
return self
end
end
redef fun min(c)
do
if c < self then
return c
else
return self
end
end
end
# Native bytes.
# Same as a C `unsigned char`
universal Byte
super Discrete
super Numeric
redef type OTHER: Byte
redef fun successor(i) do return self + i.to_b
redef fun predecessor(i) do return self - i.to_b
redef fun object_id is intern
redef fun hash do return self.to_i
redef fun ==(i) is intern
redef fun !=(i) is intern
redef fun output is intern
redef fun <=(i) is intern
redef fun <(i) is intern
redef fun >=(i) is intern
redef fun >(i) is intern
redef fun +(i) is intern
# On an Byte, unary minus will return `(256 - self) % 256`
#
# assert -1u8 == 0xFFu8
# assert -0u8 == 0x00u8
redef fun - is intern
redef fun -(i) is intern
redef fun *(i) is intern
redef fun /(i) is intern
# Modulo of `self` with `i`.
#
# Finds the remainder of division of `self` by `i`.
#
# assert 5u8 % 2u8 == 1u8
# assert 10u8 % 2u8 == 0u8
fun %(i: Byte): Byte is intern
redef fun zero do return 0.to_b
redef fun value_of(val) do return val.to_b
# `i` bits shift fo the left
#
# assert 5u8 << 1 == 10u8
fun <<(i: Int): Byte is intern `{ return self << i; `}
# `i` bits shift fo the right
#
# assert 5u8 >> 1 == 2u8
fun >>(i: Int): Byte is intern `{ return self >> i; `}
redef fun to_i is intern
redef fun to_f is intern
redef fun to_b do return self
redef fun distance(i) do return (self - i).to_i
redef fun <=>(other)
do
if self < other then
return -1
else if other < self then
return 1
else
return 0
end
end
redef fun is_between(c, d)
do
if self < c or d < self then
return false
else
return true
end
end
redef fun max(other)
do
if self < other then
return other
else
return self
end
end
redef fun min(c)
do
if c < self then
return c
else
return self
end
end
# Is `self` an ASCII whitespace ?
fun is_whitespace: Bool do return self == 0x7Fu8 or self <= 0x20u8
end
# Native integer numbers.
# Correspond to C int.
universal Int
super Discrete
super Numeric
redef type OTHER: Int
redef fun successor(i) do return self + i
redef fun predecessor(i) do return self - i
redef fun object_id is intern
redef fun hash do return self
redef fun ==(i) is intern
redef fun !=(i) is intern
redef fun output is intern
redef fun <=(i) is intern
redef fun <(i) is intern
redef fun >=(i) is intern
redef fun >(i) is intern
redef fun +(i) is intern
redef fun - is intern
redef fun -(i) is intern
redef fun *(i) is intern
redef fun /(i) is intern
# Modulo of `self` with `i`.
#
# Finds the remainder of division of `self` by `i`.
#
# assert 5 % 2 == 1
# assert 10 % 2 == 0
fun %(i: Int): Int is intern
redef fun zero do return 0
redef fun value_of(val) do return val.to_i
# `i` bits shift fo the left
#
# assert 5 << 1 == 10
fun <<(i: Int): Int is intern `{ return self << i; `}
# `i` bits shift fo the right
#
# assert 5 >> 1 == 2
fun >>(i: Int): Int is intern `{ return self >> i; `}
redef fun to_i do return self
redef fun to_f is intern
redef fun to_b is intern
redef fun distance(i)
do
var d = self - i
if d >= 0 then
return d
else
return -d
end
end
redef fun <=>(other)
do
if self < other then
return -1
else if other < self then
return 1
else
return 0
end
end
redef fun is_between(c, d)
do
if self < c or d < self then
return false
else
return true
end
end
redef fun max(other)
do
if self < other then
return other
else
return self
end
end
redef fun min(c)
do
if c < self then
return c
else
return self
end
end
# The character which code point (unicode-wise) is `self`
#
# assert 65.code_point == 'A'
# assert 10.code_point == '\n'
# assert 0x220B.code_point == '∋'
fun code_point: Char is intern `{ return (uint32_t)self; `}
# Number of digits of an integer in base `b` (plus one if negative)
#
# assert 123.digit_count(10) == 3
# assert 123.digit_count(2) == 7 # 1111011 in binary
fun digit_count(b: Int): Int
do
if b == 10 then return digit_count_base_10
var d: Int # number of digits
var n: Int # current number
# Sign
if self < 0 then
d = 1
n = - self
else if self == 0 then
return 1
else
d = 0
n = self
end
# count digits
while n > 0 do
d += 1
n = n / b # euclidian division /
end
return d
end
# Optimized version for base 10
fun digit_count_base_10: Int
do
var val: Int
var result: Int
if self < 0 then
result = 2
val = -self
else
result = 1
val = self
end
loop
if val < 10 then return result
if val < 100 then return result+1
if val < 1000 then return result+2
if val < 10000 then return result+3
val = val / 10000
result += 4
end
end
# Return the corresponding digit character
# If 0 <= `self` <= 9, return the corresponding character.
#
# assert 5.to_c == '5'
#
# If 10 <= `self` <= 36, return the corresponding letter [a..z].
#
# assert 15.to_c == 'f'
fun to_c: Char
do
assert self >= 0 and self <= 36 # TODO plan for this
if self < 10 then
return (self + '0'.code_point).code_point
else
return (self - 10 + 'a'.code_point).code_point
end
end
# The absolute value of self
#
# assert (-10).abs == 10
# assert 10.abs == 10
# assert 0.abs == 0
fun abs: Int do return if self >= 0 then self else -self
# Is `self` an ASCII whitespace ?
fun is_whitespace: Bool do return self == 0x7F or self <= 0x20
end
# Native characters.
# Characters are denoted with simple quote.
# eg. `'a'` or `'\n'`.
universal Char
super Discrete
redef type OTHER: Char
redef fun object_id is intern
redef fun output `{
if(self < 128){
printf("%c", self);
}else if(self < 2048){
printf("%c%c", 0xC0 | ((0x7C0 & self) >> 6), 0x80 | (0x3F & self));
}else if(self < 65536){
printf("%c%c%c", 0xE0 | ((0xF000 & self) >> 12), 0x80 | ((0xFC0 & self) >> 6) ,0x80 | (0x3F & self));
}else if(self < 2097152){
printf("%c%c%c%c", 0xF0 | ((0x1C0000 & self) >> 18), 0x80 | ((0x3F000 & self) >> 12), 0x80 | ((0xFC0 & self) >> 6), 0x80 | (0x3F & self));
}else{
// Bad char
printf("%c", self);
}
`}
redef fun hash do return code_point
redef fun ==(o) is intern
redef fun !=(o) is intern
redef fun <=(i) is intern
redef fun <(i) is intern
redef fun >=(i) is intern
redef fun >(i) is intern
redef fun successor(i) is intern
redef fun predecessor(i) is intern
# The `i`-th char after self (in code point)
#
# ~~~
# assert 'A' + 5 == 'F'
# ~~~
#
# Alias of `successor`.
fun +(i: Int): Char do return successor(i)
# The `i`-th char before self (in code point)
#
# ~~~
# assert 'F' - 5 == 'A'
# ~~~
#
# Alias of `predecessor`.
fun -(i: Int): Char do return predecessor(i)
redef fun distance(c)
do
var d = self.code_point - c.code_point
if d >= 0 then
return d
else
return -d
end
end
# If `self` is a digit then return this digit else return -1.
#
# assert '5'.to_i == 5
fun to_i: Int
do
if self == '-' then
return -1
else if is_digit then
return self.code_point - '0'.code_point
else
return self.to_lower.code_point - 'a'.code_point + 10
end
end
# The unicode code point value of `self`
#
# assert 'A'.code_point == 65
# assert '\n'.code_point == 10
# assert '∋'.code_point == 0x220B
fun code_point: Int is intern `{ return (long)self; `}
# Is `self` an ASCII character ?
#
# assert 'x'.is_ascii
# assert not 'ま'.is_ascii
fun is_ascii: Bool do return code_point <= 127
# Return the lower case version of self.
# If self is not a letter, then return self
#
# assert 'A'.to_lower == 'a'
# assert 'a'.to_lower == 'a'
# assert '$'.to_lower == '$'
fun to_lower: Char
do
if is_upper then
return (code_point + ('a'.distance('A'))).code_point
else
return self
end
end
# Return the upper case version of self.
# If self is not a letter, then return self
#
# assert 'a'.to_upper == 'A'
# assert 'A'.to_upper == 'A'
# assert '$'.to_upper == '$'
fun to_upper: Char
do