-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathnoise.nit
430 lines (388 loc) · 14.6 KB
/
noise.nit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# This file is part of NIT ( http://www.nitlanguage.org ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Noise generators `PerlinNoise` and `InterpolatedNoise`
module noise is serialize
import serialization
# 2D noise generator
abstract class Noise
# Get the noise value at `x`, `y`
#
# The coordinates `x`, `y` can be floats of any size.
#
# Returns a value between or equal to `min` and `max`.
fun [](x, y: Float): Float is abstract
# Lowest possible value returned by `[]`
#
# Default at `0.0`.
#
# Require: `min < max`
var min = 0.0 is writable
# Highest possible value returned by `[]`
#
# Default at `1.0`.
#
# Require: `min < max`
var max = 1.0 is writable
# Distance between reference points of the noise
#
# Higher values will result in smoother noise and
# lower values will result in steeper curves.
#
# Default at `1.0`.
var period = 1.0 is writable
# Amplitude of the values returned by `[]`
fun amplitude: Float do return max - min
# Set the desired amplitude of the values returned by `[]`
#
# Will only modify `max`, `min` stays the same.
fun amplitude=(value: Float) do max = min + value
# Frequency of this noise
fun frequency: Float do return 1.0/period
# Set the frequency if this noise
fun frequency=(value: Float) do period = 1.0/value
# Seed to the random number generator `gradient_vector`
#
# By default, `seed` has a random value created with `Int::rand`.
var seed: Int = 19511359.rand is lazy, writable
end
# 2D Perlin noise generator using layered `InterpolatedNoise`
#
# Get values at any coordinates with `[]`.
# The behavior of this generator can be customized using its attributes `min`,
# `max`, `period` and `seed`.
#
# This noise is more realistic and less smooth than the `InterpolatedNoise`.
#
# Due to implementation logic, the full amplitude cannot be reached.
# In practice, only `amplitude * (1.0 - 1.0 / n_levels)` is covered.
#
# This implementation uses a custom deterministic pseudo random number
# generator to set `InterpolatedNoise::seed` of the `layers`.
# It is seeded with the local `seed` and can be further customized by
# redefining `pseudo_random`.
# This process do not require any state, so this class only holds the
# attributes of the generator and does not keep any generated data.
#
# ## Usage example
#
# ~~~
# var map = new PerlinNoise
# map.min = 0.0
# map.max = 16.0
# map.period = 20.0
# map.seed = 0
#
# var max = 0.0
# var min = 100.0
# for y in 30.times do
# for x in 70.times do
# # Get a value at x, y
# var val = map[x.to_f, y.to_f]
# printn val.to_i.to_hex
#
# max = max.max(val)
# min = min.min(val)
# end
# print ""
# end
# assert max <= map.max
# assert min >= map.min
# ~~~
#
# ## Result at seed == 0
#
# ~~~raw
# 76666555444322234567789abbcbbaabbaa98777766665665566667888987655444444
# 776665554443322234567789abbbbbbbbba98777766666665556666788998654444444
# 777766544443322234566789abbbbbbbbaa99877777776665556666788888655444444
# 777776444443322244556679abbbccbbbaa99877777776655556666688888655444444
# 777766444444332244555678abbbccbbbaa99887787877655556666678888654444444
# 8887654344443333444456789abcccbbaa999877888886555555666688777654444455
# 8887654344443333444456789abbcdcbaa999887889887655555566677777654444456
# 7876654434444444444456778abbcccaaa999888899888655555566677777654444556
# 78765544344445544444567789bbccca99999888899988765555566666667654445566
# 77765444344455554445567889bbccba99999998999988765555566555666654445667
# 7765444334555665445556788abbbba988998999999988765555566545556554456677
# 87654444334556655455567899bbbba998888899999887766555566544556555456777
# 87655444334566665555567899bbbbba98888899988888776555566544556555556777
# 97655544334566665555567899abbbba98888899988888776555655544456555667777
# 97655544444566665556667899aaaaba98888999877777776555555444456666667777
# 866555444456666666566789999aaaaa98889998877777766556544443456667777777
# 976555445556776666666789aa99aaaa98889998876777666555544444456677887777
# 9765554556667777776667899999aaaa98889988876676666555443444446678888888
# 87655555666777788766678999899aaa99889988776666666554433344446789998888
# 876555566777788888766889998899a999889987776666666543333334456899a99899
# 766556677877889998877888888889a99998888777666666653222233345799aaa999a
# 6665556777777899998878988888899999999887777656666543222233446899aa999a
# 6655456777777899999888988888889999a988887776566666532222233457899a999a
# 665555677777789999998998888878899aa9888887765666655322222234578899aa9a
# 665555677777789999a98888888877899aa9888887766666655322222234467899aa9a
# 65666677667778999aaa988878877789aaa9888887776676654322222344467889aa9a
# 55566677767788899aaa987777777789aaa9888887776666654322222344567889aaa9
# 5566767777788889aaaa987777777789aaaa988887777666555432122344556899aaa9
# 5567777777788889aaaa977777777789aaaa99888777766555543212234555689aaaaa
# 5667877777889989aaa9876677777889aaaa99888777765554443212334555689aaaaa
# ~~~
class PerlinNoise
super Noise
# Desired number of `layers`
#
# This attribute must be assigned before any call to `layers` or `[]`.
#
# By default, it is the highest integer under the logarithm base 2
# of `amplitude`, or 4, whichever is the highest.
var n_layers: Int = 4.max(amplitude.abs.log_base(2.0).to_i) is lazy, writable
# Layers of `InterpolatedNoise` composing `self`
var layers: Array[InterpolatedNoise] is lazy do
var layers = new Array[InterpolatedNoise]
var max = max
var min = min
var period = period
var seed = seed
for l in n_layers.times do
min = min / 2.0
max = max / 2.0
seed = pseudo_random(seed)
var layer = new InterpolatedNoise
layer.min = min
layer.max = max
layer.period = period
layer.seed = seed
layers.add layer
period = period / 2.0
end
return layers
end
redef fun [](x, y)
do
var val = 0.0
for layer in layers do
val += layer[x, y]
end
return val
end
# Deterministic pseudo random number generator
#
# Used to get seeds for layers from the previous layers or `seed`.
protected fun pseudo_random(value: Int): Int
do
return (value * 3537391).mask % 1291377
end
end
# Simple interpolated noise
#
# Generates smoother noise than `PerlinNoise`.
#
# Each coordinates at a multiple of `period` defines a random vector and
# values in between are interpolated from these vectors.
#
# This implementation uses a custom deterministic pseudo random number
# generator seeded with `seed`.
# It can be further customized by redefining `gradient_vector`.
# This process do not require any state, so this class only holds the
# attributes of the generator and does not keep any generated data.
#
# ## Usage example
#
# ~~~
# var map = new InterpolatedNoise
# map.min = 0.0
# map.max = 16.0
# map.period = 20.0
# map.seed = 0
#
# var max = 0.0
# var min = 100.0
# for y in 30.times do
# for x in 70.times do
# # Get a value at x, y
# var val = map[x.to_f, y.to_f]
# printn val.to_i.to_hex
#
# max = max.max(val)
# min = min.min(val)
# end
# print ""
# end
# assert max <= map.max
# assert min >= map.min
# ~~~
#
# ## Result at seed == 0
#
# ~~~raw
# 89abcddeeeeeeeddcba9877666555555555666778766555544444555566789abcddeee
# 789abcddeeeeeeddccba887766655555555566677766555544444555566779abcddeee
# 689abcddeeeeeeeddcba988776655555555555667666555554455555566778abccdeee
# 678abccdeeeeeeeedccba988766655555555555666655555555555556666789abcddee
# 5789abcddeeeeeeeddcba998776655544444555666655555555555556666789abcddee
# 5689abcddeeeeeeeedccba98776655544444455566555555555555566666789abccdde
# 4679abccdeeeffeeeddcba98776655444444445565555555555555666666789abbcddd
# 4678abccdeeeffeeeedcba98876555444444444555555555566666666666689aabccdd
# 46789abcdeeeeffeeedccb988765544443344445555566666666666666666789abccdd
# 45789abcddeeeffeeeddcb987765544433334445555666666666666666666789abbccd
# 45789abcddeeeeeeeeddcb987665444333333445556666666777777777766789aabccc
# 45789abcddeeeeeeeeddca987655443333333445566666777777777777776789aabbcc
# 45789abcddeeeeeeeedcca9876544333333333455666777777788877777767899aabbc
# 46789abcddeeeeeeeddcba9876544333222333455667777888888888877767899aabbb
# 46789abcdddeeeeedddcba87655433222223334566777888889998888877778899aabb
# 5678aabcdddeeeedddccb987654332222222334566778889999999998887778899aaab
# 5689abbcddddeedddccba9865443222222223345677889999aaaa99998877788999aaa
# 6789abbcddddddddccbba8765432221111223345678899aaaaaaaaaa9988778889999a
# 6789abccdddddddccbba9865433221111122344577899aabbbbbbbaaa9987788889999
# 789abbccddddddccbba9876543211111111234567899aabbbccccbbbaa987788888899
# 889abbccdddddccbba9886543211000001123456889abbcccccccccbba988888888888
# 899abbcccddddcccbaa9875432211000011223457899abbcccccccccbba98888888888
# 899abbccccddccccbba9876533211000001123456789aabccccddcccbbaa9998888888
# 899abbccccccccccbbaa9765432111000011223456899abbcccdddcccbba9999988888
# 899abbbcccccccccbbaa9865432211000011123456789abbccdddddcccbba999988888
# 899aabbcccccccccbbaa9875433211100001122346789abbccddddddcccbaa99988888
# 899aabbbcccccccbbbbaa876543211100001122345689aabccdddddddccbaaa9988887
# 899aabbbbbbccbbbbbbaa876543221110001112335679aabccddddddddcbbaa9988877
# 899aaabbbbbbbbbbbbbaa9765433211111111123356789abccddddddddccbaa9988777
# 8999aaaabbbbbbbbbbaaa9765433221111111122356789abccdddeedddccbaa9988777
# ~~~
class InterpolatedNoise
super Noise
redef fun [](x, y)
do
x = x/period
y = y/period
# Get grid coordinates
var x0 = if x > 0.0 then x.to_i else x.to_i - 1
var x1 = x0 + 1
var y0 = if y > 0.0 then y.to_i else y.to_i - 1
var y1 = y0 + 1
# Position in grid
var sx = x - x0.to_f
var sy = y - y0.to_f
# Interpolate
var n0 = gradient_dot_product(x0, y0, x, y)
var n1 = gradient_dot_product(x1, y0, x, y)
var ix0 = sx.lerp(n0, n1)
n0 = gradient_dot_product(x0, y1, x, y)
n1 = gradient_dot_product(x1, y1, x, y)
var ix1 = sx.lerp(n0, n1)
var val = sy.lerp(ix0, ix1)
# Return value in [min...max] from val in [-1.0...1.0]
val /= 2.0
val += 0.5
return val.lerp(min, max)
end
# Get the component `w` of the gradient unit vector at `x`, `y`
#
# `w` at 0 targets the X axis, at 1 the Y axis.
#
# Returns a value between -1.0 and 1.0.
#
# Require: `w == 0 or w == 1`
protected fun gradient_vector(x, y, w: Int): Float
do
assert w == 0 or w == 1
# Use our own deterministic pseudo random number generator
#
# These magic prime numbers were determined good enough by
# non-emperical experimentation. They may need to be changed/improved.
var seed = 817721 + self.seed
var i = seed * (x+seed) * 25111217 * (y+seed) * 72233613
var mod = 137121
var angle = (i.mask.abs%mod).to_f*2.0*pi/mod.to_f
# Debug code to evaluate the efficiency of the random angle generator
# The average of the produced angles should be at pi
#
#var sum = once new Container[Float](0.0)
#var count = once new Container[Float](0.0)
#sum.item += angle
#count.item += 1.0
#if count.item.to_i % 1000 == 0 then print "avg:{sum.item/count.item}/{count.item} i:{i} a:{angle} ({x}, {y}: {seed})"
if w == 0 then return angle.cos
return angle.sin
end
private fun gradient_dot_product(ix, iy: Int, x, y: Float): Float
do
var dx = x - ix.to_f
var dy = y - iy.to_f
return dx*gradient_vector(ix, iy, 0) + dy*gradient_vector(ix, iy, 1)
end
end
redef universal Int
# The value of the least-significant 30 bits of `self`
#
# This mask is used as compatibility with 32 bits architecture.
# The missing 2 bits are used to tag integers by the Nit system.
private fun mask: Int
do
return self & 0x3FFF_FFFF
end
end
redef universal Float
# Smoothened `self`, used by `ImprovedNoise`
private fun fade: Float do return self*self*self*(self*(self*6.0-15.0)+10.0)
end
# Direct translation of Ken Perlin's improved noise Java implementation
#
# This implementation differs from `PerlinNoise` on two main points.
# This noise is calculated for a 3D point, vs 2D in `PerlinNoise`.
# `PerlinNoise` is based off a customizable seed, while this noise has a static data source.
class ImprovedNoise
# Permutations
private var p: Array[Int] = [151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180] * 2
# Noise value in [-1..1] at 3D coordinates `x, y, z`
fun noise(x, y, z: Float): Float
do
var xx = x.floor.to_i & 255
var yy = y.floor.to_i & 255
var zz = z.floor.to_i & 255
x -= x.floor
y -= y.floor
z -= z.floor
var u = x.fade
var v = y.fade
var w = z.fade
var a = p[xx ] + yy
var aa = p[a ] + zz
var ab = p[a+1 ] + zz
var b = p[xx+1] + yy
var ba = p[b ] + zz
var bb = p[b+1 ] + zz
return w.lerp(v.lerp(u.lerp(grad(p[aa ], x, y, z ),
grad(p[ba ], x-1.0, y, z )),
u.lerp(grad(p[ab ], x, y-1.0, z ),
grad(p[bb ], x-1.0, y-1.0, z ))),
v.lerp(u.lerp(grad(p[aa+1], x, y, z-1.0),
grad(p[ba+1], x-1.0, y, z-1.0)),
u.lerp(grad(p[ab+1], x, y-1.0, z-1.0),
grad(p[bb+1], x-1.0, y-1.0, z-1.0))))
end
# Value at a corner of the grid
private fun grad(hash: Int, x, y, z: Float): Float
do
var h = hash & 15
var u = if h < 8 then x else y
var v = if h < 4 then y else if h == 12 or h == 14 then x else z
return (if h.is_even then u else -u) + (if h & 2 == 0 then v else -v)
end
end