forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory-tiers.c
732 lines (641 loc) · 18.4 KB
/
memory-tiers.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// SPDX-License-Identifier: GPL-2.0
#include <linux/slab.h>
#include <linux/lockdep.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include <linux/memory.h>
#include <linux/memory-tiers.h>
#include "internal.h"
struct memory_tier {
/* hierarchy of memory tiers */
struct list_head list;
/* list of all memory types part of this tier */
struct list_head memory_types;
/*
* start value of abstract distance. memory tier maps
* an abstract distance range,
* adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
*/
int adistance_start;
struct device dev;
/* All the nodes that are part of all the lower memory tiers. */
nodemask_t lower_tier_mask;
};
struct demotion_nodes {
nodemask_t preferred;
};
struct node_memory_type_map {
struct memory_dev_type *memtype;
int map_count;
};
static DEFINE_MUTEX(memory_tier_lock);
static LIST_HEAD(memory_tiers);
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
static struct memory_dev_type *default_dram_type;
static struct bus_type memory_tier_subsys = {
.name = "memory_tiering",
.dev_name = "memory_tier",
};
#ifdef CONFIG_MIGRATION
static int top_tier_adistance;
/*
* node_demotion[] examples:
*
* Example 1:
*
* Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
*
* node distances:
* node 0 1 2 3
* 0 10 20 30 40
* 1 20 10 40 30
* 2 30 40 10 40
* 3 40 30 40 10
*
* memory_tiers0 = 0-1
* memory_tiers1 = 2-3
*
* node_demotion[0].preferred = 2
* node_demotion[1].preferred = 3
* node_demotion[2].preferred = <empty>
* node_demotion[3].preferred = <empty>
*
* Example 2:
*
* Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
*
* node distances:
* node 0 1 2
* 0 10 20 30
* 1 20 10 30
* 2 30 30 10
*
* memory_tiers0 = 0-2
*
* node_demotion[0].preferred = <empty>
* node_demotion[1].preferred = <empty>
* node_demotion[2].preferred = <empty>
*
* Example 3:
*
* Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
*
* node distances:
* node 0 1 2
* 0 10 20 30
* 1 20 10 40
* 2 30 40 10
*
* memory_tiers0 = 1
* memory_tiers1 = 0
* memory_tiers2 = 2
*
* node_demotion[0].preferred = 2
* node_demotion[1].preferred = 0
* node_demotion[2].preferred = <empty>
*
*/
static struct demotion_nodes *node_demotion __read_mostly;
#endif /* CONFIG_MIGRATION */
static inline struct memory_tier *to_memory_tier(struct device *device)
{
return container_of(device, struct memory_tier, dev);
}
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
{
nodemask_t nodes = NODE_MASK_NONE;
struct memory_dev_type *memtype;
list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling)
nodes_or(nodes, nodes, memtype->nodes);
return nodes;
}
static void memory_tier_device_release(struct device *dev)
{
struct memory_tier *tier = to_memory_tier(dev);
/*
* synchronize_rcu in clear_node_memory_tier makes sure
* we don't have rcu access to this memory tier.
*/
kfree(tier);
}
static ssize_t nodelist_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
nodemask_t nmask;
mutex_lock(&memory_tier_lock);
nmask = get_memtier_nodemask(to_memory_tier(dev));
ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
mutex_unlock(&memory_tier_lock);
return ret;
}
static DEVICE_ATTR_RO(nodelist);
static struct attribute *memtier_dev_attrs[] = {
&dev_attr_nodelist.attr,
NULL
};
static const struct attribute_group memtier_dev_group = {
.attrs = memtier_dev_attrs,
};
static const struct attribute_group *memtier_dev_groups[] = {
&memtier_dev_group,
NULL
};
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
{
int ret;
bool found_slot = false;
struct memory_tier *memtier, *new_memtier;
int adistance = memtype->adistance;
unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
lockdep_assert_held_once(&memory_tier_lock);
adistance = round_down(adistance, memtier_adistance_chunk_size);
/*
* If the memtype is already part of a memory tier,
* just return that.
*/
if (!list_empty(&memtype->tier_sibiling)) {
list_for_each_entry(memtier, &memory_tiers, list) {
if (adistance == memtier->adistance_start)
return memtier;
}
WARN_ON(1);
return ERR_PTR(-EINVAL);
}
list_for_each_entry(memtier, &memory_tiers, list) {
if (adistance == memtier->adistance_start) {
goto link_memtype;
} else if (adistance < memtier->adistance_start) {
found_slot = true;
break;
}
}
new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
if (!new_memtier)
return ERR_PTR(-ENOMEM);
new_memtier->adistance_start = adistance;
INIT_LIST_HEAD(&new_memtier->list);
INIT_LIST_HEAD(&new_memtier->memory_types);
if (found_slot)
list_add_tail(&new_memtier->list, &memtier->list);
else
list_add_tail(&new_memtier->list, &memory_tiers);
new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
new_memtier->dev.bus = &memory_tier_subsys;
new_memtier->dev.release = memory_tier_device_release;
new_memtier->dev.groups = memtier_dev_groups;
ret = device_register(&new_memtier->dev);
if (ret) {
list_del(&memtier->list);
put_device(&memtier->dev);
return ERR_PTR(ret);
}
memtier = new_memtier;
link_memtype:
list_add(&memtype->tier_sibiling, &memtier->memory_types);
return memtier;
}
static struct memory_tier *__node_get_memory_tier(int node)
{
pg_data_t *pgdat;
pgdat = NODE_DATA(node);
if (!pgdat)
return NULL;
/*
* Since we hold memory_tier_lock, we can avoid
* RCU read locks when accessing the details. No
* parallel updates are possible here.
*/
return rcu_dereference_check(pgdat->memtier,
lockdep_is_held(&memory_tier_lock));
}
#ifdef CONFIG_MIGRATION
bool node_is_toptier(int node)
{
bool toptier;
pg_data_t *pgdat;
struct memory_tier *memtier;
pgdat = NODE_DATA(node);
if (!pgdat)
return false;
rcu_read_lock();
memtier = rcu_dereference(pgdat->memtier);
if (!memtier) {
toptier = true;
goto out;
}
if (memtier->adistance_start <= top_tier_adistance)
toptier = true;
else
toptier = false;
out:
rcu_read_unlock();
return toptier;
}
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
{
struct memory_tier *memtier;
/*
* pg_data_t.memtier updates includes a synchronize_rcu()
* which ensures that we either find NULL or a valid memtier
* in NODE_DATA. protect the access via rcu_read_lock();
*/
rcu_read_lock();
memtier = rcu_dereference(pgdat->memtier);
if (memtier)
*targets = memtier->lower_tier_mask;
else
*targets = NODE_MASK_NONE;
rcu_read_unlock();
}
/**
* next_demotion_node() - Get the next node in the demotion path
* @node: The starting node to lookup the next node
*
* Return: node id for next memory node in the demotion path hierarchy
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
* @node online or guarantee that it *continues* to be the next demotion
* target.
*/
int next_demotion_node(int node)
{
struct demotion_nodes *nd;
int target;
if (!node_demotion)
return NUMA_NO_NODE;
nd = &node_demotion[node];
/*
* node_demotion[] is updated without excluding this
* function from running.
*
* Make sure to use RCU over entire code blocks if
* node_demotion[] reads need to be consistent.
*/
rcu_read_lock();
/*
* If there are multiple target nodes, just select one
* target node randomly.
*
* In addition, we can also use round-robin to select
* target node, but we should introduce another variable
* for node_demotion[] to record last selected target node,
* that may cause cache ping-pong due to the changing of
* last target node. Or introducing per-cpu data to avoid
* caching issue, which seems more complicated. So selecting
* target node randomly seems better until now.
*/
target = node_random(&nd->preferred);
rcu_read_unlock();
return target;
}
static void disable_all_demotion_targets(void)
{
struct memory_tier *memtier;
int node;
for_each_node_state(node, N_MEMORY) {
node_demotion[node].preferred = NODE_MASK_NONE;
/*
* We are holding memory_tier_lock, it is safe
* to access pgda->memtier.
*/
memtier = __node_get_memory_tier(node);
if (memtier)
memtier->lower_tier_mask = NODE_MASK_NONE;
}
/*
* Ensure that the "disable" is visible across the system.
* Readers will see either a combination of before+disable
* state or disable+after. They will never see before and
* after state together.
*/
synchronize_rcu();
}
/*
* Find an automatic demotion target for all memory
* nodes. Failing here is OK. It might just indicate
* being at the end of a chain.
*/
static void establish_demotion_targets(void)
{
struct memory_tier *memtier;
struct demotion_nodes *nd;
int target = NUMA_NO_NODE, node;
int distance, best_distance;
nodemask_t tier_nodes, lower_tier;
lockdep_assert_held_once(&memory_tier_lock);
if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION))
return;
disable_all_demotion_targets();
for_each_node_state(node, N_MEMORY) {
best_distance = -1;
nd = &node_demotion[node];
memtier = __node_get_memory_tier(node);
if (!memtier || list_is_last(&memtier->list, &memory_tiers))
continue;
/*
* Get the lower memtier to find the demotion node list.
*/
memtier = list_next_entry(memtier, list);
tier_nodes = get_memtier_nodemask(memtier);
/*
* find_next_best_node, use 'used' nodemask as a skip list.
* Add all memory nodes except the selected memory tier
* nodelist to skip list so that we find the best node from the
* memtier nodelist.
*/
nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
/*
* Find all the nodes in the memory tier node list of same best distance.
* add them to the preferred mask. We randomly select between nodes
* in the preferred mask when allocating pages during demotion.
*/
do {
target = find_next_best_node(node, &tier_nodes);
if (target == NUMA_NO_NODE)
break;
distance = node_distance(node, target);
if (distance == best_distance || best_distance == -1) {
best_distance = distance;
node_set(target, nd->preferred);
} else {
break;
}
} while (1);
}
/*
* Promotion is allowed from a memory tier to higher
* memory tier only if the memory tier doesn't include
* compute. We want to skip promotion from a memory tier,
* if any node that is part of the memory tier have CPUs.
* Once we detect such a memory tier, we consider that tier
* as top tiper from which promotion is not allowed.
*/
list_for_each_entry_reverse(memtier, &memory_tiers, list) {
tier_nodes = get_memtier_nodemask(memtier);
nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
if (!nodes_empty(tier_nodes)) {
/*
* abstract distance below the max value of this memtier
* is considered toptier.
*/
top_tier_adistance = memtier->adistance_start +
MEMTIER_CHUNK_SIZE - 1;
break;
}
}
/*
* Now build the lower_tier mask for each node collecting node mask from
* all memory tier below it. This allows us to fallback demotion page
* allocation to a set of nodes that is closer the above selected
* perferred node.
*/
lower_tier = node_states[N_MEMORY];
list_for_each_entry(memtier, &memory_tiers, list) {
/*
* Keep removing current tier from lower_tier nodes,
* This will remove all nodes in current and above
* memory tier from the lower_tier mask.
*/
tier_nodes = get_memtier_nodemask(memtier);
nodes_andnot(lower_tier, lower_tier, tier_nodes);
memtier->lower_tier_mask = lower_tier;
}
}
#else
static inline void disable_all_demotion_targets(void) {}
static inline void establish_demotion_targets(void) {}
#endif /* CONFIG_MIGRATION */
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
{
if (!node_memory_types[node].memtype)
node_memory_types[node].memtype = memtype;
/*
* for each device getting added in the same NUMA node
* with this specific memtype, bump the map count. We
* Only take memtype device reference once, so that
* changing a node memtype can be done by droping the
* only reference count taken here.
*/
if (node_memory_types[node].memtype == memtype) {
if (!node_memory_types[node].map_count++)
kref_get(&memtype->kref);
}
}
static struct memory_tier *set_node_memory_tier(int node)
{
struct memory_tier *memtier;
struct memory_dev_type *memtype;
pg_data_t *pgdat = NODE_DATA(node);
lockdep_assert_held_once(&memory_tier_lock);
if (!node_state(node, N_MEMORY))
return ERR_PTR(-EINVAL);
__init_node_memory_type(node, default_dram_type);
memtype = node_memory_types[node].memtype;
node_set(node, memtype->nodes);
memtier = find_create_memory_tier(memtype);
if (!IS_ERR(memtier))
rcu_assign_pointer(pgdat->memtier, memtier);
return memtier;
}
static void destroy_memory_tier(struct memory_tier *memtier)
{
list_del(&memtier->list);
device_unregister(&memtier->dev);
}
static bool clear_node_memory_tier(int node)
{
bool cleared = false;
pg_data_t *pgdat;
struct memory_tier *memtier;
pgdat = NODE_DATA(node);
if (!pgdat)
return false;
/*
* Make sure that anybody looking at NODE_DATA who finds
* a valid memtier finds memory_dev_types with nodes still
* linked to the memtier. We achieve this by waiting for
* rcu read section to finish using synchronize_rcu.
* This also enables us to free the destroyed memory tier
* with kfree instead of kfree_rcu
*/
memtier = __node_get_memory_tier(node);
if (memtier) {
struct memory_dev_type *memtype;
rcu_assign_pointer(pgdat->memtier, NULL);
synchronize_rcu();
memtype = node_memory_types[node].memtype;
node_clear(node, memtype->nodes);
if (nodes_empty(memtype->nodes)) {
list_del_init(&memtype->tier_sibiling);
if (list_empty(&memtier->memory_types))
destroy_memory_tier(memtier);
}
cleared = true;
}
return cleared;
}
static void release_memtype(struct kref *kref)
{
struct memory_dev_type *memtype;
memtype = container_of(kref, struct memory_dev_type, kref);
kfree(memtype);
}
struct memory_dev_type *alloc_memory_type(int adistance)
{
struct memory_dev_type *memtype;
memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
if (!memtype)
return ERR_PTR(-ENOMEM);
memtype->adistance = adistance;
INIT_LIST_HEAD(&memtype->tier_sibiling);
memtype->nodes = NODE_MASK_NONE;
kref_init(&memtype->kref);
return memtype;
}
EXPORT_SYMBOL_GPL(alloc_memory_type);
void destroy_memory_type(struct memory_dev_type *memtype)
{
kref_put(&memtype->kref, release_memtype);
}
EXPORT_SYMBOL_GPL(destroy_memory_type);
void init_node_memory_type(int node, struct memory_dev_type *memtype)
{
mutex_lock(&memory_tier_lock);
__init_node_memory_type(node, memtype);
mutex_unlock(&memory_tier_lock);
}
EXPORT_SYMBOL_GPL(init_node_memory_type);
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
{
mutex_lock(&memory_tier_lock);
if (node_memory_types[node].memtype == memtype)
node_memory_types[node].map_count--;
/*
* If we umapped all the attached devices to this node,
* clear the node memory type.
*/
if (!node_memory_types[node].map_count) {
node_memory_types[node].memtype = NULL;
kref_put(&memtype->kref, release_memtype);
}
mutex_unlock(&memory_tier_lock);
}
EXPORT_SYMBOL_GPL(clear_node_memory_type);
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
unsigned long action, void *_arg)
{
struct memory_tier *memtier;
struct memory_notify *arg = _arg;
/*
* Only update the node migration order when a node is
* changing status, like online->offline.
*/
if (arg->status_change_nid < 0)
return notifier_from_errno(0);
switch (action) {
case MEM_OFFLINE:
mutex_lock(&memory_tier_lock);
if (clear_node_memory_tier(arg->status_change_nid))
establish_demotion_targets();
mutex_unlock(&memory_tier_lock);
break;
case MEM_ONLINE:
mutex_lock(&memory_tier_lock);
memtier = set_node_memory_tier(arg->status_change_nid);
if (!IS_ERR(memtier))
establish_demotion_targets();
mutex_unlock(&memory_tier_lock);
break;
}
return notifier_from_errno(0);
}
static int __init memory_tier_init(void)
{
int ret, node;
struct memory_tier *memtier;
ret = subsys_virtual_register(&memory_tier_subsys, NULL);
if (ret)
panic("%s() failed to register memory tier subsystem\n", __func__);
#ifdef CONFIG_MIGRATION
node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
GFP_KERNEL);
WARN_ON(!node_demotion);
#endif
mutex_lock(&memory_tier_lock);
/*
* For now we can have 4 faster memory tiers with smaller adistance
* than default DRAM tier.
*/
default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
if (!default_dram_type)
panic("%s() failed to allocate default DRAM tier\n", __func__);
/*
* Look at all the existing N_MEMORY nodes and add them to
* default memory tier or to a tier if we already have memory
* types assigned.
*/
for_each_node_state(node, N_MEMORY) {
memtier = set_node_memory_tier(node);
if (IS_ERR(memtier))
/*
* Continue with memtiers we are able to setup
*/
break;
}
establish_demotion_targets();
mutex_unlock(&memory_tier_lock);
hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO);
return 0;
}
subsys_initcall(memory_tier_init);
bool numa_demotion_enabled = false;
#ifdef CONFIG_MIGRATION
#ifdef CONFIG_SYSFS
static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%s\n",
numa_demotion_enabled ? "true" : "false");
}
static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
ssize_t ret;
ret = kstrtobool(buf, &numa_demotion_enabled);
if (ret)
return ret;
return count;
}
static struct kobj_attribute numa_demotion_enabled_attr =
__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
numa_demotion_enabled_store);
static struct attribute *numa_attrs[] = {
&numa_demotion_enabled_attr.attr,
NULL,
};
static const struct attribute_group numa_attr_group = {
.attrs = numa_attrs,
};
static int __init numa_init_sysfs(void)
{
int err;
struct kobject *numa_kobj;
numa_kobj = kobject_create_and_add("numa", mm_kobj);
if (!numa_kobj) {
pr_err("failed to create numa kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(numa_kobj, &numa_attr_group);
if (err) {
pr_err("failed to register numa group\n");
goto delete_obj;
}
return 0;
delete_obj:
kobject_put(numa_kobj);
return err;
}
subsys_initcall(numa_init_sysfs);
#endif /* CONFIG_SYSFS */
#endif