forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextent-tree.c
5937 lines (5269 loc) · 160 KB
/
extent-tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/sched/signal.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/rcupdate.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/percpu_counter.h>
#include <linux/lockdep.h>
#include <linux/crc32c.h>
#include "misc.h"
#include "tree-log.h"
#include "disk-io.h"
#include "print-tree.h"
#include "volumes.h"
#include "raid56.h"
#include "locking.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "sysfs.h"
#include "qgroup.h"
#include "ref-verify.h"
#include "space-info.h"
#include "block-rsv.h"
#include "delalloc-space.h"
#include "block-group.h"
#include "discard.h"
#include "rcu-string.h"
#undef SCRAMBLE_DELAYED_REFS
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_node *node, u64 parent,
u64 root_objectid, u64 owner_objectid,
u64 owner_offset, int refs_to_drop,
struct btrfs_delayed_extent_op *extra_op);
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
struct extent_buffer *leaf,
struct btrfs_extent_item *ei);
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
u64 parent, u64 root_objectid,
u64 flags, u64 owner, u64 offset,
struct btrfs_key *ins, int ref_mod);
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op);
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key);
static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
{
return (cache->flags & bits) == bits;
}
int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
u64 start, u64 num_bytes)
{
u64 end = start + num_bytes - 1;
set_extent_bits(&fs_info->excluded_extents, start, end,
EXTENT_UPTODATE);
return 0;
}
void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
u64 start, end;
start = cache->start;
end = start + cache->length - 1;
clear_extent_bits(&fs_info->excluded_extents, start, end,
EXTENT_UPTODATE);
}
static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
{
if (ref->type == BTRFS_REF_METADATA) {
if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
return BTRFS_BLOCK_GROUP_SYSTEM;
else
return BTRFS_BLOCK_GROUP_METADATA;
}
return BTRFS_BLOCK_GROUP_DATA;
}
static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_ref *ref)
{
struct btrfs_space_info *space_info;
u64 flags = generic_ref_to_space_flags(ref);
space_info = btrfs_find_space_info(fs_info, flags);
ASSERT(space_info);
percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
BTRFS_TOTAL_BYTES_PINNED_BATCH);
}
static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_ref *ref)
{
struct btrfs_space_info *space_info;
u64 flags = generic_ref_to_space_flags(ref);
space_info = btrfs_find_space_info(fs_info, flags);
ASSERT(space_info);
percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
BTRFS_TOTAL_BYTES_PINNED_BATCH);
}
/* simple helper to search for an existing data extent at a given offset */
int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
{
int ret;
struct btrfs_key key;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = start;
key.offset = len;
key.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
btrfs_free_path(path);
return ret;
}
/*
* helper function to lookup reference count and flags of a tree block.
*
* the head node for delayed ref is used to store the sum of all the
* reference count modifications queued up in the rbtree. the head
* node may also store the extent flags to set. This way you can check
* to see what the reference count and extent flags would be if all of
* the delayed refs are not processed.
*/
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 bytenr,
u64 offset, int metadata, u64 *refs, u64 *flags)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_path *path;
struct btrfs_extent_item *ei;
struct extent_buffer *leaf;
struct btrfs_key key;
u32 item_size;
u64 num_refs;
u64 extent_flags;
int ret;
/*
* If we don't have skinny metadata, don't bother doing anything
* different
*/
if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
offset = fs_info->nodesize;
metadata = 0;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (!trans) {
path->skip_locking = 1;
path->search_commit_root = 1;
}
search_again:
key.objectid = bytenr;
key.offset = offset;
if (metadata)
key.type = BTRFS_METADATA_ITEM_KEY;
else
key.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
if (ret < 0)
goto out_free;
if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
if (path->slots[0]) {
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid == bytenr &&
key.type == BTRFS_EXTENT_ITEM_KEY &&
key.offset == fs_info->nodesize)
ret = 0;
}
}
if (ret == 0) {
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if (item_size >= sizeof(*ei)) {
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
num_refs = btrfs_extent_refs(leaf, ei);
extent_flags = btrfs_extent_flags(leaf, ei);
} else {
ret = -EINVAL;
btrfs_print_v0_err(fs_info);
if (trans)
btrfs_abort_transaction(trans, ret);
else
btrfs_handle_fs_error(fs_info, ret, NULL);
goto out_free;
}
BUG_ON(num_refs == 0);
} else {
num_refs = 0;
extent_flags = 0;
ret = 0;
}
if (!trans)
goto out;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
if (head) {
if (!mutex_trylock(&head->mutex)) {
refcount_inc(&head->refs);
spin_unlock(&delayed_refs->lock);
btrfs_release_path(path);
/*
* Mutex was contended, block until it's released and try
* again
*/
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref_head(head);
goto search_again;
}
spin_lock(&head->lock);
if (head->extent_op && head->extent_op->update_flags)
extent_flags |= head->extent_op->flags_to_set;
else
BUG_ON(num_refs == 0);
num_refs += head->ref_mod;
spin_unlock(&head->lock);
mutex_unlock(&head->mutex);
}
spin_unlock(&delayed_refs->lock);
out:
WARN_ON(num_refs == 0);
if (refs)
*refs = num_refs;
if (flags)
*flags = extent_flags;
out_free:
btrfs_free_path(path);
return ret;
}
/*
* Back reference rules. Back refs have three main goals:
*
* 1) differentiate between all holders of references to an extent so that
* when a reference is dropped we can make sure it was a valid reference
* before freeing the extent.
*
* 2) Provide enough information to quickly find the holders of an extent
* if we notice a given block is corrupted or bad.
*
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
* maintenance. This is actually the same as #2, but with a slightly
* different use case.
*
* There are two kinds of back refs. The implicit back refs is optimized
* for pointers in non-shared tree blocks. For a given pointer in a block,
* back refs of this kind provide information about the block's owner tree
* and the pointer's key. These information allow us to find the block by
* b-tree searching. The full back refs is for pointers in tree blocks not
* referenced by their owner trees. The location of tree block is recorded
* in the back refs. Actually the full back refs is generic, and can be
* used in all cases the implicit back refs is used. The major shortcoming
* of the full back refs is its overhead. Every time a tree block gets
* COWed, we have to update back refs entry for all pointers in it.
*
* For a newly allocated tree block, we use implicit back refs for
* pointers in it. This means most tree related operations only involve
* implicit back refs. For a tree block created in old transaction, the
* only way to drop a reference to it is COW it. So we can detect the
* event that tree block loses its owner tree's reference and do the
* back refs conversion.
*
* When a tree block is COWed through a tree, there are four cases:
*
* The reference count of the block is one and the tree is the block's
* owner tree. Nothing to do in this case.
*
* The reference count of the block is one and the tree is not the
* block's owner tree. In this case, full back refs is used for pointers
* in the block. Remove these full back refs, add implicit back refs for
* every pointers in the new block.
*
* The reference count of the block is greater than one and the tree is
* the block's owner tree. In this case, implicit back refs is used for
* pointers in the block. Add full back refs for every pointers in the
* block, increase lower level extents' reference counts. The original
* implicit back refs are entailed to the new block.
*
* The reference count of the block is greater than one and the tree is
* not the block's owner tree. Add implicit back refs for every pointer in
* the new block, increase lower level extents' reference count.
*
* Back Reference Key composing:
*
* The key objectid corresponds to the first byte in the extent,
* The key type is used to differentiate between types of back refs.
* There are different meanings of the key offset for different types
* of back refs.
*
* File extents can be referenced by:
*
* - multiple snapshots, subvolumes, or different generations in one subvol
* - different files inside a single subvolume
* - different offsets inside a file (bookend extents in file.c)
*
* The extent ref structure for the implicit back refs has fields for:
*
* - Objectid of the subvolume root
* - objectid of the file holding the reference
* - original offset in the file
* - how many bookend extents
*
* The key offset for the implicit back refs is hash of the first
* three fields.
*
* The extent ref structure for the full back refs has field for:
*
* - number of pointers in the tree leaf
*
* The key offset for the implicit back refs is the first byte of
* the tree leaf
*
* When a file extent is allocated, The implicit back refs is used.
* the fields are filled in:
*
* (root_key.objectid, inode objectid, offset in file, 1)
*
* When a file extent is removed file truncation, we find the
* corresponding implicit back refs and check the following fields:
*
* (btrfs_header_owner(leaf), inode objectid, offset in file)
*
* Btree extents can be referenced by:
*
* - Different subvolumes
*
* Both the implicit back refs and the full back refs for tree blocks
* only consist of key. The key offset for the implicit back refs is
* objectid of block's owner tree. The key offset for the full back refs
* is the first byte of parent block.
*
* When implicit back refs is used, information about the lowest key and
* level of the tree block are required. These information are stored in
* tree block info structure.
*/
/*
* is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
* is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
* is_data == BTRFS_REF_TYPE_ANY, either type is OK.
*/
int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
struct btrfs_extent_inline_ref *iref,
enum btrfs_inline_ref_type is_data)
{
int type = btrfs_extent_inline_ref_type(eb, iref);
u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
type == BTRFS_SHARED_BLOCK_REF_KEY ||
type == BTRFS_SHARED_DATA_REF_KEY ||
type == BTRFS_EXTENT_DATA_REF_KEY) {
if (is_data == BTRFS_REF_TYPE_BLOCK) {
if (type == BTRFS_TREE_BLOCK_REF_KEY)
return type;
if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
ASSERT(eb->fs_info);
/*
* Every shared one has parent tree block,
* which must be aligned to sector size.
*/
if (offset &&
IS_ALIGNED(offset, eb->fs_info->sectorsize))
return type;
}
} else if (is_data == BTRFS_REF_TYPE_DATA) {
if (type == BTRFS_EXTENT_DATA_REF_KEY)
return type;
if (type == BTRFS_SHARED_DATA_REF_KEY) {
ASSERT(eb->fs_info);
/*
* Every shared one has parent tree block,
* which must be aligned to sector size.
*/
if (offset &&
IS_ALIGNED(offset, eb->fs_info->sectorsize))
return type;
}
} else {
ASSERT(is_data == BTRFS_REF_TYPE_ANY);
return type;
}
}
btrfs_print_leaf((struct extent_buffer *)eb);
btrfs_err(eb->fs_info,
"eb %llu iref 0x%lx invalid extent inline ref type %d",
eb->start, (unsigned long)iref, type);
WARN_ON(1);
return BTRFS_REF_TYPE_INVALID;
}
u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
{
u32 high_crc = ~(u32)0;
u32 low_crc = ~(u32)0;
__le64 lenum;
lenum = cpu_to_le64(root_objectid);
high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(owner);
low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(offset);
low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
return ((u64)high_crc << 31) ^ (u64)low_crc;
}
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref)
{
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
btrfs_extent_data_ref_objectid(leaf, ref),
btrfs_extent_data_ref_offset(leaf, ref));
}
static int match_extent_data_ref(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref,
u64 root_objectid, u64 owner, u64 offset)
{
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
btrfs_extent_data_ref_offset(leaf, ref) != offset)
return 0;
return 1;
}
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid,
u64 owner, u64 offset)
{
struct btrfs_root *root = trans->fs_info->extent_root;
struct btrfs_key key;
struct btrfs_extent_data_ref *ref;
struct extent_buffer *leaf;
u32 nritems;
int ret;
int recow;
int err = -ENOENT;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
}
again:
recow = 0;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (parent) {
if (!ret)
return 0;
goto fail;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
err = ret;
if (ret)
goto fail;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != bytenr ||
key.type != BTRFS_EXTENT_DATA_REF_KEY)
goto fail;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset)) {
if (recow) {
btrfs_release_path(path);
goto again;
}
err = 0;
break;
}
path->slots[0]++;
}
fail:
return err;
}
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid, u64 owner,
u64 offset, int refs_to_add)
{
struct btrfs_root *root = trans->fs_info->extent_root;
struct btrfs_key key;
struct extent_buffer *leaf;
u32 size;
u32 num_refs;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
size = sizeof(struct btrfs_shared_data_ref);
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
size = sizeof(struct btrfs_extent_data_ref);
}
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
if (parent) {
struct btrfs_shared_data_ref *ref;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
if (ret == 0) {
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_shared_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
}
} else {
struct btrfs_extent_data_ref *ref;
while (ret == -EEXIST) {
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset))
break;
btrfs_release_path(path);
key.offset++;
ret = btrfs_insert_empty_item(trans, root, path, &key,
size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
}
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (ret == 0) {
btrfs_set_extent_data_ref_root(leaf, ref,
root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_extent_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
}
}
btrfs_mark_buffer_dirty(leaf);
ret = 0;
fail:
btrfs_release_path(path);
return ret;
}
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
int refs_to_drop, int *last_ref)
{
struct btrfs_key key;
struct btrfs_extent_data_ref *ref1 = NULL;
struct btrfs_shared_data_ref *ref2 = NULL;
struct extent_buffer *leaf;
u32 num_refs = 0;
int ret = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
btrfs_print_v0_err(trans->fs_info);
btrfs_abort_transaction(trans, -EINVAL);
return -EINVAL;
} else {
BUG();
}
BUG_ON(num_refs < refs_to_drop);
num_refs -= refs_to_drop;
if (num_refs == 0) {
ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
*last_ref = 1;
} else {
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
btrfs_mark_buffer_dirty(leaf);
}
return ret;
}
static noinline u32 extent_data_ref_count(struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_data_ref *ref1;
struct btrfs_shared_data_ref *ref2;
u32 num_refs = 0;
int type;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
if (iref) {
/*
* If type is invalid, we should have bailed out earlier than
* this call.
*/
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
ASSERT(type != BTRFS_REF_TYPE_INVALID);
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else {
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
}
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
} else {
WARN_ON(1);
}
return num_refs;
}
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_root *root = trans->fs_info->extent_root;
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
return ret;
}
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
path, &key, 0);
btrfs_release_path(path);
return ret;
}
static inline int extent_ref_type(u64 parent, u64 owner)
{
int type;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
if (parent > 0)
type = BTRFS_SHARED_BLOCK_REF_KEY;
else
type = BTRFS_TREE_BLOCK_REF_KEY;
} else {
if (parent > 0)
type = BTRFS_SHARED_DATA_REF_KEY;
else
type = BTRFS_EXTENT_DATA_REF_KEY;
}
return type;
}
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key)
{
for (; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 >=
btrfs_header_nritems(path->nodes[level]))
continue;
if (level == 0)
btrfs_item_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
else
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
return 1;
}
/*
* look for inline back ref. if back ref is found, *ref_ret is set
* to the address of inline back ref, and 0 is returned.
*
* if back ref isn't found, *ref_ret is set to the address where it
* should be inserted, and -ENOENT is returned.
*
* if insert is true and there are too many inline back refs, the path
* points to the extent item, and -EAGAIN is returned.
*
* NOTE: inline back refs are ordered in the same way that back ref
* items in the tree are ordered.
*/
static noinline_for_stack
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_extent_inline_ref **ref_ret,
u64 bytenr, u64 num_bytes,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int insert)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
u64 flags;
u64 item_size;
unsigned long ptr;
unsigned long end;
int extra_size;
int type;
int want;
int ret;
int err = 0;
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
int needed;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
want = extent_ref_type(parent, owner);
if (insert) {
extra_size = btrfs_extent_inline_ref_size(want);
path->keep_locks = 1;
} else
extra_size = -1;
/*
* Owner is our level, so we can just add one to get the level for the
* block we are interested in.
*/
if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
key.type = BTRFS_METADATA_ITEM_KEY;
key.offset = owner;
}
again:
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
if (ret < 0) {
err = ret;
goto out;
}
/*
* We may be a newly converted file system which still has the old fat
* extent entries for metadata, so try and see if we have one of those.
*/
if (ret > 0 && skinny_metadata) {
skinny_metadata = false;
if (path->slots[0]) {
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid == bytenr &&
key.type == BTRFS_EXTENT_ITEM_KEY &&
key.offset == num_bytes)
ret = 0;
}
if (ret) {
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
btrfs_release_path(path);
goto again;
}
}
if (ret && !insert) {
err = -ENOENT;
goto out;
} else if (WARN_ON(ret)) {
err = -EIO;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
if (unlikely(item_size < sizeof(*ei))) {
err = -EINVAL;
btrfs_print_v0_err(fs_info);
btrfs_abort_transaction(trans, err);
goto out;
}
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
flags = btrfs_extent_flags(leaf, ei);
ptr = (unsigned long)(ei + 1);
end = (unsigned long)ei + item_size;
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
ptr += sizeof(struct btrfs_tree_block_info);
BUG_ON(ptr > end);
}
if (owner >= BTRFS_FIRST_FREE_OBJECTID)
needed = BTRFS_REF_TYPE_DATA;
else
needed = BTRFS_REF_TYPE_BLOCK;
err = -ENOENT;
while (1) {
if (ptr >= end) {
WARN_ON(ptr > end);
break;
}
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
if (type == BTRFS_REF_TYPE_INVALID) {
err = -EUCLEAN;
goto out;
}
if (want < type)
break;
if (want > type) {
ptr += btrfs_extent_inline_ref_size(type);
continue;
}
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
struct btrfs_extent_data_ref *dref;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
if (match_extent_data_ref(leaf, dref, root_objectid,
owner, offset)) {
err = 0;
break;
}
if (hash_extent_data_ref_item(leaf, dref) <
hash_extent_data_ref(root_objectid, owner, offset))
break;
} else {
u64 ref_offset;
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
if (parent > 0) {
if (parent == ref_offset) {
err = 0;
break;
}
if (ref_offset < parent)
break;
} else {
if (root_objectid == ref_offset) {
err = 0;
break;
}
if (ref_offset < root_objectid)
break;
}
}
ptr += btrfs_extent_inline_ref_size(type);
}
if (err == -ENOENT && insert) {
if (item_size + extra_size >=
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
err = -EAGAIN;
goto out;
}
/*
* To add new inline back ref, we have to make sure
* there is no corresponding back ref item.
* For simplicity, we just do not add new inline back
* ref if there is any kind of item for this block
*/
if (find_next_key(path, 0, &key) == 0 &&
key.objectid == bytenr &&
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
err = -EAGAIN;
goto out;
}
}
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
out:
if (insert) {
path->keep_locks = 0;
btrfs_unlock_up_safe(path, 1);
}