forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
join_merge.py
169 lines (133 loc) · 5.3 KB
/
join_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from vbench.benchmark import Benchmark
from datetime import datetime
common_setup = """from pandas_vb_common import *
"""
setup = common_setup + """
level1 = np.array([rands(10) for _ in xrange(10)], dtype='O')
level2 = np.array([rands(10) for _ in xrange(1000)], dtype='O')
label1 = np.arange(10).repeat(1000)
label2 = np.tile(np.arange(1000), 10)
key1 = np.tile(level1.take(label1), 10)
key2 = np.tile(level2.take(label2), 10)
shuf = np.arange(100000)
random.shuffle(shuf)
try:
index2 = MultiIndex(levels=[level1, level2], labels=[label1, label2])
index3 = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)],
labels=[np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10)])
df_multi = DataFrame(np.random.randn(len(index2), 4), index=index2,
columns=['A', 'B', 'C', 'D'])
except: # pre-MultiIndex
pass
try:
DataFrame = DataMatrix
except:
pass
df = DataFrame({'data1' : np.random.randn(100000),
'data2' : np.random.randn(100000),
'key1' : key1,
'key2' : key2})
df_key1 = DataFrame(np.random.randn(len(level1), 4), index=level1,
columns=['A', 'B', 'C', 'D'])
df_key2 = DataFrame(np.random.randn(len(level2), 4), index=level2,
columns=['A', 'B', 'C', 'D'])
df_shuf = df.reindex(df.index[shuf])
"""
#----------------------------------------------------------------------
# DataFrame joins on key
join_dataframe_index_single_key_small = \
Benchmark("df.join(df_key1, on='key1')", setup,
name='join_dataframe_index_single_key_small')
join_dataframe_index_single_key_bigger = \
Benchmark("df.join(df_key2, on='key2')", setup,
name='join_dataframe_index_single_key_bigger')
join_dataframe_index_single_key_bigger_sort = \
Benchmark("df_shuf.join(df_key2, on='key2', sort=True)", setup,
name='join_dataframe_index_single_key_bigger',
start_date=datetime(2012, 2, 5))
join_dataframe_index_multi = \
Benchmark("df.join(df_multi, on=['key1', 'key2'])", setup,
name='join_dataframe_index_multi',
start_date=datetime(2011, 10, 20))
#----------------------------------------------------------------------
# Joins on integer keys
join_dataframe_integer_key = Benchmark("merge(df, df2, on='key')", setup,
start_date=datetime(2011, 10, 20))
#----------------------------------------------------------------------
# DataFrame joins on index
#----------------------------------------------------------------------
# Merges
#----------------------------------------------------------------------
# Appending DataFrames
setup = common_setup + """
df1 = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D'])
df2 = df1.copy()
df2.index = np.arange(10000, 20000)
mdf1 = df1.copy()
mdf1['obj1'] = 'bar'
mdf1['obj2'] = 'bar'
mdf1['int1'] = 5
try:
mdf1.consolidate(inplace=True)
except:
pass
mdf2 = mdf1.copy()
mdf2.index = df2.index
"""
stmt = "df1.append(df2)"
append_frame_single_homogenous = \
Benchmark(stmt, setup, name='append_frame_single_homogenous',
ncalls=500, repeat=1)
stmt = "mdf1.append(mdf2)"
append_frame_single_mixed = Benchmark(stmt, setup,
name='append_frame_single_mixed',
ncalls=500, repeat=1)
#----------------------------------------------------------------------
# data alignment
setup = common_setup + """n = 1000000
# indices = Index([rands(10) for _ in xrange(n)])
def sample(values, k):
sampler = np.random.permutation(len(values))
return values.take(sampler[:k])
sz = 500000
rng = np.arange(0, 10000000000000, 10000000)
stamps = np.datetime64(datetime.now()).view('i8') + rng
idx1 = np.sort(sample(stamps, sz))
idx2 = np.sort(sample(stamps, sz))
ts1 = Series(np.random.randn(sz), idx1)
ts2 = Series(np.random.randn(sz), idx2)
"""
stmt = "ts1 + ts2"
series_align_int64_index = \
Benchmark(stmt, setup,
name="series_align_int64_index",
start_date=datetime(2010, 6, 1), logy=True)
stmt = "ts1.align(ts2, join='left')"
series_align_left_monotonic = \
Benchmark(stmt, setup,
name="series_align_left_monotonic",
start_date=datetime(2011, 12, 1), logy=True)
#----------------------------------------------------------------------
# Concat Series axis=1
setup = common_setup + """
n = 1000
indices = Index([rands(10) for _ in xrange(1000)])
s = Series(n, index=indices)
pieces = [s[i:-i] for i in range(1, 10)]
pieces = pieces * 50
"""
concat_series_axis1 = Benchmark('concat(pieces, axis=1)', setup,
start_date=datetime(2012, 2, 27))
#----------------------------------------------------------------------
# Ordered merge
setup = common_setup + """
groups = np.array([rands(10) for _ in xrange(10)], dtype='O')
left = DataFrame({'group': groups.repeat(5000),
'key' : np.tile(np.arange(0, 10000, 2), 10),
'lvalue': np.random.randn(50000)})
right = DataFrame({'key' : np.arange(10000),
'rvalue' : np.random.randn(10000)})
"""
stmt = "ordered_merge(left, right, on='key', left_by='group')"