-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_one2branch_qa.py
606 lines (560 loc) · 25 KB
/
run_one2branch_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# coding=utf-8
from models.transformers import get_linear_schedule_with_warmup, T5Tokenizer
from models.modeling_t5_branching import T5ForConditionalGeneration
from tqdm import trange
import os
import random
from utils import save_dataset, set_seed, save_model
import json
import argparse
import time
import copy
from tqdm import tqdm
from eval_scripts.eval_script_msqa import evaluate_msqa
from read_datasets import *
import ast
import numpy as np
import torch
device = torch.device("cuda:0")
def get_input_feature_train(features, tokenizer, max_length, max_target_len):
input_list, decoder_input_ids = [], []
max_answer_len = 0
features_new = []
decoder_num = []
for b_i, sample in enumerate(features):
answers = copy.deepcopy(sample['answers'])
assert len(answers) > 0
question = sample['question']
if use_context:
context = sample['context']
input_list.append(f'Question: {question} Context: {context}')
else:
input_list.append(f'Question: {question}')
for group_i, sample in enumerate(features):
answers = copy.deepcopy(sample['answers'])
assert len(answers) > 0
# if len(answers) == 0:
# continue
negatives = []
if 'pred' in sample:
answers_norm = [ans.lower() for ans in answers]
pred_ans = sample['pred']
for pred in pred_ans:
if pred.lower() not in answers_norm:
negatives.append(pred)
if len(negatives) > 1:
negatives = negatives[:1]
# negatives = random.sample(negatives, 1)
encoding = tokenizer(answers + negatives,
padding='longest',
max_length=max_target_len,
truncation=True)
answer_ids = encoding.input_ids
answer_ids = [
[label if label != tokenizer.pad_token_id else -100 for label in labels_example] for labels_example in
answer_ids
]
negative_ids = answer_ids[len(answers):]
answer_ids = answer_ids[: len(answers)]
labels, common_nums = branching_labels(answer_ids)
assert len(labels) == len(answers)
for a_i, (answer_id, label, common_num) in enumerate(zip(answer_ids, labels, common_nums)):
sample_new = copy.deepcopy(sample)
if len(label) > max_answer_len:
max_answer_len = len(label)
sample_new['label'] = label
answer_id_new = []
for item in answer_id:
if item != -100:
answer_id_new.append(item)
sample_new['decoder_input_id'] = answer_id_new
label_mask = []
for c_num in common_num:
# label_mask.append(1 / c_num)
label_mask.append(1)
sample_new['label_mask'] = label_mask
features_new.append(sample_new)
def prefix_len(list1, list2):
idx = 0
while len(list1) < idx and len(list2) < idx and list1[idx] == list2[idx]:
idx += 1
return idx
assert len(negatives) == len(negative_ids)
for negative_id in negative_ids:
sample_new = copy.deepcopy(sample)
answer_id_new = []
for item in negative_id:
if item != -100:
answer_id_new.append(item)
sample_new['decoder_input_id'] = answer_id_new
if len(answer_id_new) > max_answer_len:
max_answer_len = len(answer_id_new)
max_prefix_len = 0
for answer_id in answer_ids:
max_prefix_len = max(max_prefix_len, prefix_len(negative_id, answer_id))
sample_new['label_mask'] = [0] * max_prefix_len + [1] * (len(negative_id) - max_prefix_len)
sample_new['label'] = [[]] * len(negative_id)
features_new.append(sample_new)
decoder_num.append(len(answers) + len(negatives))
features = features_new
labels = np.zeros([len(features), max_answer_len, vocab_size])
label_masks = np.zeros([len(features), max_answer_len])
answers_list = []
for b_i, sample in enumerate(features):
question = sample['question']
answers_list.append(sample['answers'])
decoder_input_id = copy.deepcopy(sample['decoder_input_id'])
while len(decoder_input_id) < max_answer_len:
decoder_input_id.append(-100)
decoder_input_ids.append(decoder_input_id)
label_mask = sample['label_mask']
label = sample['label']
assert len(label) == len(label_mask)
for seq_i, (seq_label, m) in enumerate(zip(label, label_mask)):
for l in seq_label:
labels[b_i][seq_i][l] = 1
label_masks[b_i][seq_i] = m
input_ids, input_masks = tokenizer_fun(tokenizer, input_list, max_length)
input_ids = torch.tensor(input_ids, dtype=torch.long).to(device)
input_masks = torch.tensor(input_masks, dtype=torch.long).to(device)
labels = torch.tensor(labels, dtype=torch.long).to(device)
decoder_input_ids = torch.tensor(decoder_input_ids, dtype=torch.long).to(device)
label_masks = torch.tensor(label_masks, dtype=torch.float).to(device)
return input_ids, input_masks, decoder_input_ids, labels, label_masks, decoder_num
def tokenizer_fun(tokenizer, input_ids, max_len):
encoding = tokenizer(input_ids,
padding='longest',
max_length=max_len,
truncation=True)
ids = encoding.input_ids
mask = encoding.attention_mask
return ids, mask
def get_input_feature_test(features, tokenizer, max_length):
input_list = []
for sample in features:
question = sample['question']
if use_context:
context = sample['context']
input_list.append(f'Question: {question} Context: {context}')
else:
input_list.append(f'Question: {question}')
if only_eval_train:
args.min_beam_num = len(sample['answers']) + 2
if args.min_beam_num > 20:
args.min_beam_num = 20
input_ids, input_masks = tokenizer_fun(tokenizer, input_list, max_length)
input_ids = torch.tensor(input_ids, dtype=torch.long).to(device)
input_masks = torch.tensor(input_masks, dtype=torch.long).to(device)
return input_ids, input_masks
def branching_labels(answer_ids):
common_ancestor = []
for i, answer in enumerate(answer_ids):
common_ancestor.append([j for j in range(len(answer_ids))])
# common_ancestor.append([i])
answer_num = np.size(answer_ids, axis=0)
seq_len = np.size(answer_ids, axis=1)
labels = [[] for i in range(answer_num)]
common_num = [[] for i in range(answer_num)]
for seq_i in range(seq_len):
for a_i, ancestor in enumerate(common_ancestor):
for ancestor_i in ancestor:
vob_id = answer_ids[ancestor_i][seq_i]
if vob_id != -100:
if len(labels[a_i]) != seq_i + 1:
labels[a_i].append([vob_id])
else:
if vob_id not in labels[a_i][seq_i]:
labels[a_i][seq_i].append(vob_id)
else:
break
for a_i, ancestor in enumerate(copy.deepcopy(common_ancestor)):
vob_id1 = answer_ids[a_i][seq_i]
for ancestor_i in ancestor:
if a_i == ancestor_i:
continue
vob_id2 = answer_ids[ancestor_i][seq_i]
if vob_id1 != vob_id2:
common_ancestor[a_i].remove(ancestor_i)
for a_i, ancestor in enumerate(common_ancestor):
vob_id = answer_ids[a_i][seq_i]
if vob_id != -100:
common_num[a_i].append(len(ancestor))
# for b_i, answer_id in enumerate(answer_ids):
# for s_i, id in enumerate(answer_id):
# if id == -100:
# assert len(labels[b_i]) == s_i
# break
return labels, common_num
@torch.no_grad()
def evaluate(model, test_examples, eval_batch_size, tokenizer, max_len, max_target_len):
model.eval()
step_count = len(test_examples) // eval_batch_size
if step_count * eval_batch_size < len(test_examples):
step_count += 1
preds = {}
golds = {}
dataset_pred = []
time_all = 0
assert eval_batch_size == 1
for sample in tqdm(test_examples):
input_ids, input_masks = get_input_feature_test([sample], tokenizer, max_len)
beg = time.time()
t5_output = model.generate(
input_ids=input_ids,
max_length=max_target_len,
attention_mask=input_masks,
do_sample=False,
output_hidden_states=True,
return_dict_in_generate=True,
use_cache=False,
branching_decoding=True,
min_beam_num=args.min_beam_num,
max_beam_num=args.max_beam_num
)
output_sequences = t5_output.sequences
score_list = t5_output.score_list
predicts = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
assert len(predicts) == len(score_list)
scores = []
for score_item in score_list:
scores.append(sum(score_item) / len(score_item))
predicts = [(predict, score) for predict, score in zip(predicts, scores)]
predicts = sorted(predicts, key=lambda x: x[1], reverse=True)
if only_eval_train is False:
predicts_new = []
for predict in predicts:
text, score = predict
if score > 0:
predicts_new.append(text)
if len(predicts_new) == 0:
predicts_new.append(predicts[0][0])
spans_predicts = predicts_new
else:
spans_predicts = [item[0] for item in predicts]
if use_context:
context = sample['context']
spans_predicts_new = []
for spans_predict in spans_predicts:
if spans_predict.lower().strip() in context.lower():
spans_predicts_new.append(spans_predict)
if len(spans_predicts_new) != 0:
spans_predicts = spans_predicts_new
end = time.time()
time_all += (end-beg)
id = sample['id']
answers = sample['answers']
preds[id] = spans_predicts
sample['pred'] = spans_predicts
golds[id] = answers
dataset_pred.append({
'id': id,
'context': sample['context'],
'question': sample['question'],
'answers': answers,
'pred': spans_predicts
})
print('Throughout:', round(len(test_examples) / time_all, 2))
scores = evaluate_fun(copy.deepcopy(preds), copy.deepcopy(golds))
return scores, dataset_pred
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_name",
default='t5-base',
type=str)
parser.add_argument("--sample_negative",
default=False,
type=ast.literal_eval)
parser.add_argument("--debug",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval_train",
default=False,
type=ast.literal_eval)
parser.add_argument("--gpu",
default="1",
type=str)
parser.add_argument("--dataset_name",
default='msqa',
type=str)
parser.add_argument("--dataset_split",
default='in_house',
# default='official',
type=str)
parser.add_argument("--train_batch_size",
default=24,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="Total batch size for eval.")
parser.add_argument('--ga',
type=int,
default=4,
help="Gradient accumulation")
parser.add_argument("--results_save_path",
default='results',
type=str)
parser.add_argument("--output_dir",
default='outputs',
type=str)
parser.add_argument("--init",
default=False,
type=ast.literal_eval)
parser.add_argument("--init_checkpoint",
default=None,
type=ast.literal_eval)
parser.add_argument("--use_context",
default=True,
type=ast.literal_eval)
parser.add_argument("--save_model",
default=True,
type=ast.literal_eval)
parser.add_argument("--max_len",
default=2048,
type=int)
parser.add_argument("--max_target_len",
default=60,
type=int)
parser.add_argument("--lr",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--epoch_num",
default=40,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--acc_epoch",
default=-1,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=0,
help="random seed for initialization")
parser.add_argument("--use_negative",
default=False,
type=ast.literal_eval)
parser.add_argument("--min_beam_num",
default=1,
type=int)
parser.add_argument("--max_beam_num",
default=20,
type=int)
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
only_eval = args.only_eval
only_eval_train = args.only_eval_train
debug = args.debug
save_model_flag = args.save_model
model_name = args.model_name
use_context = args.use_context
Tokenizer = T5Tokenizer
use_negative = args.use_negative
evaluate_fun = evaluate_msqa
dataset_name = args.dataset_name
read_dataset_fun = read_msqa
data_path_base = f'./data/in_house/{args.dataset_name}/'
print('use_negative:', use_negative)
if use_negative:
data_path_train = f'{data_path_base}/train_pred.json'
else:
data_path_train = f'{data_path_base}/train.json'
data_path_dev = f'{data_path_base}/dev.json'
data_path_test = f'{data_path_base}/test.json'
if args.model_name.endswith('/'):
args.model_name = args.model_name[:-1]
model_name_abb = args.model_name.split('/')[-1]
if use_context:
config_name = f'{args.dataset_name}/Branch/{model_name_abb}'
else:
config_name = f'{args.dataset_name}/Branch_wo_context/{model_name_abb}/'
if use_negative:
parameter_name = f'lr_{args.lr}_seed_{args.seed}_bs_{args.train_batch_size}' \
f'_ga_{args.ga}_negative'
else:
parameter_name = f'lr_{args.lr}_seed_{args.seed}_bs_{args.train_batch_size}' \
f'_ga_{args.ga}'
output_model_path = f'./{args.output_dir}/{config_name}/{parameter_name}/'
path_save_result = f'./{args.results_save_path}/{config_name}/{parameter_name}/'
os.makedirs(path_save_result, exist_ok=True)
set_seed(args.seed)
if use_negative:
args.init_checkpoint = output_model_path.replace('_negative', '') + '/pytorch_model.bin'
if debug:
train_examples = read_dataset_fun(data_path_train)[:10]
dev_examples = read_dataset_fun(data_path_dev)[:10]
test_examples = read_dataset_fun(data_path_test)[:10]
else:
train_examples = read_dataset_fun(data_path_train)
dev_examples = read_dataset_fun(data_path_dev)
test_examples = read_dataset_fun(data_path_test)
train_batch_size = args.train_batch_size // args.ga
tokenizer = Tokenizer.from_pretrained(args.model_name)
model = T5ForConditionalGeneration.from_pretrained(args.model_name)
n_gpu = torch.cuda.device_count()
layer_num = model.config.num_layers
layer_per_gpu = layer_num // n_gpu
layer_per_gpu_remainder = layer_num % n_gpu
device_map = {}
cur_layer = 0
for n in range(n_gpu):
device_map[n] = []
if n < layer_per_gpu_remainder:
layer_assigned = layer_per_gpu + 1
else:
layer_assigned = layer_per_gpu
for i in range(layer_assigned):
device_map[n].append(cur_layer)
cur_layer += 1
model.parallelize(device_map)
vocab_size = model.config.vocab_size
print(json.dumps({"lr": args.lr, "model": args.model_name, "seed": args.seed,
"bs": args.train_batch_size,
'ga': args.ga,
'init': args.init,
"epoch": args.epoch_num,
'save_model':save_model_flag,
"train_path": data_path_train,
"dev_path": data_path_dev,
"test_path": data_path_test,
"train_size": len(train_examples),
"train_examples": len(train_examples),
"dev_size": len(dev_examples),
"test_size": len(test_examples),
'max_len': args.max_len,
'output_model_path': output_model_path,
'use_context': use_context,
'path_save_result': path_save_result,
'init_checkpoint': args.init_checkpoint}, indent=2))
print('# parameters:', sum(param.numel() for param in model.parameters()))
if only_eval or only_eval_train:
args.init = True
if args.init and args.init_checkpoint is None:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', init_checkpoint)
elif args.init_checkpoint is not None:
init_checkpoint = args.init_checkpoint
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', args.init_checkpoint)
if only_eval_train:
scores, results_train = evaluate(model, train_examples,
args.eval_batch_size,
tokenizer, args.max_len,
args.max_target_len)
print(f'train:', scores)
save_dataset(data_path_base, 'train_pred.json', train_examples)
exit(0)
if only_eval:
scores, results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('dev:', scores)
save_dataset(path_save_result, '/dev.json', results_dev)
scores, results_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)
exit(0)
warm_up_ratio = 0.05
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.01)
t_total = args.epoch_num * (len(train_examples) // train_batch_size)
scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,
# num_warmup_steps=int(warm_up_ratio * (t_total)),
num_warmup_steps=1000,
num_training_steps=t_total)
step_count, step_all, early_stop = 0, 0, 0
best_dev_rouge_score, best_test_rouge_score = 0, 0
best_test_acc = 0
best_dev_acc = 0
best_dev_result, best_test_result = None, None
if args.init_checkpoint is not None or args.init:
scores_dev, results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
scores = sum([scores_dev[key] for key in scores_dev.keys()])
print('scores_dev:', scores_dev)
best_dev_acc = scores
for epoch in range(args.epoch_num):
tr_loss, nb_tr_steps = 0, 0.1
early_stop += 1
order = list(range(len(train_examples)))
random.seed(args.seed + epoch)
random.shuffle(order)
model.train()
step_count = len(train_examples) // train_batch_size
if step_count * train_batch_size < len(train_examples):
step_count += 1
step_trange = trange(step_count)
for step in step_trange:
step_all += 1
beg_index = step * train_batch_size
end_index = min((step + 1) * train_batch_size, len(train_examples))
order_index = order[beg_index:end_index]
batch_example = [train_examples[index] for index in order_index]
input_ids, input_masks, decoder_input_ids, labels, label_masks, decoder_num = \
get_input_feature_train(batch_example, tokenizer, args.max_len, args.max_target_len)
t5_output = model(input_ids=input_ids,
attention_mask=input_masks,
labels=decoder_input_ids,
decoder_num=decoder_num,
labels_branching=labels,
return_dict=True,
label_masks=label_masks)
loss = t5_output.loss
loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
loss = loss / args.ga
loss.backward()
if (step + 1) % args.ga == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loss_show = ' Epoch:' + str(epoch) + " loss:" + str(
round(tr_loss / nb_tr_steps, 4)) + f" lr:{'%.2E' % scheduler.get_last_lr()[0]}"
step_trange.set_postfix_str(loss_show)
if epoch >= args.acc_epoch:
scores_dev, results_dev = evaluate(model, dev_examples,
args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('dev:', scores_dev)
scores = sum([scores_dev[key] for key in scores_dev.keys()])
if scores > best_dev_acc:
best_dev_acc = scores
print('save new best')
if save_model_flag:
save_model(output_model_path, model, optimizer)
else:
save_dataset(path_save_result, '/dev.json', results_dev)
scores_test, results_test = evaluate(model, test_examples,
args.eval_batch_size,
tokenizer, args.max_len,
args.max_target_len)
print('test:', scores_test)
save_dataset(path_save_result, '/test.json', results_test)
print('best_dev_result:', best_dev_result)
print('best_test_result:', best_test_result)
print(path_save_result)
###############################
if save_model_flag:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', init_checkpoint)
scores, results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('dev:', scores)
save_dataset(path_save_result, '/dev.json', results_dev)
scores, results_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)