forked from HandBrake/HandBrake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fifo.c
1290 lines (1123 loc) · 31.1 KB
/
fifo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* fifo.c
Copyright (c) 2003-2022 HandBrake Team
This file is part of the HandBrake source code
Homepage: <http://handbrake.fr/>.
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
*/
#include "libavcodec/avcodec.h"
#include "handbrake/handbrake.h"
#if HB_PROJECT_FEATURE_QSV
#include "handbrake/qsv_libav.h"
#include "handbrake/qsv_common.h"
#endif
#ifndef SYS_DARWIN
#if defined( SYS_FREEBSD ) || defined ( __FreeBSD__ ) || defined(SYS_NETBSD)
#include <stdlib.h>
#else
#include <malloc.h>
#endif
#endif
#define FIFO_TIMEOUT 200
//#define HB_FIFO_DEBUG 1
// defining HB_BUFFER_DEBUG and HB_NO_BUFFER_POOL allows tracking
// buffer memory leaks using valgrind. The source of the leak
// can be determined with "valgrind --leak-check=full"
//#define HB_BUFFER_DEBUG 1
//#define HB_NO_BUFFER_POOL 1
#if defined(HB_BUFFER_DEBUG)
#include <assert.h>
#endif
/* Fifo */
struct hb_fifo_s
{
hb_lock_t * lock;
hb_cond_t * cond_full;
int wait_full;
hb_cond_t * cond_empty;
int wait_empty;
hb_cond_t * cond_alert_full;
uint32_t capacity;
uint32_t thresh;
uint32_t size;
uint32_t buffer_size;
hb_buffer_t * first;
hb_buffer_t * last;
#if defined(HB_FIFO_DEBUG)
// Fifo list for debugging
hb_fifo_t * next;
#endif
};
#if defined(HB_FIFO_DEBUG)
static hb_fifo_t fifo_list =
{
.next = NULL
};
#endif
/* we round the requested buffer size up to the next power of 2 so there can
* be at most 32 possible pools when the size is a 32 bit int. To avoid a lot
* of slow & error-prone run-time checking we allow for all 32. */
#define MAX_BUFFER_POOLS 32
#define BUFFER_POOL_FIRST 10
#define BUFFER_POOL_LAST 25
/* the buffer pool only exists to avoid the two malloc and two free calls that
* it would otherwise take to allocate & free a buffer. but we don't want to
* tie up a lot of memory in the pool because this allocator isn't as general
* as malloc so memory tied up here puts more pressure on the malloc pool.
* A pool of 16 elements will avoid 94% of the malloc/free calls without wasting
* too much memory. */
#define BUFFER_POOL_MAX_ELEMENTS 32
struct hb_buffer_pools_s
{
int64_t allocated;
hb_lock_t *lock;
#if !defined(HB_NO_BUFFER_POOL)
hb_fifo_t *pool[MAX_BUFFER_POOLS];
#endif
#if defined(HB_BUFFER_DEBUG)
hb_list_t *alloc_list;
#endif
} buffers;
#if defined(HB_BUFFER_DEBUG)
static int hb_fifo_contains( hb_fifo_t *f, hb_buffer_t *b );
#endif
void hb_buffer_pool_init( void )
{
buffers.lock = hb_lock_init();
buffers.allocated = 0;
#if defined(HB_BUFFER_DEBUG)
buffers.alloc_list = hb_list_init();
#endif
#if !defined(HB_NO_BUFFER_POOL)
/* we allocate pools for sizes 2^10 through 2^25. requests larger than
* 2^25 will get passed through to malloc. */
int i;
// Create larger queue for 2^10 bucket since all allocations smaller than
// 2^10 come from here.
buffers.pool[BUFFER_POOL_FIRST] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS*10, 1);
buffers.pool[BUFFER_POOL_FIRST]->buffer_size = 1 << 10;
/* requests smaller than 2^10 are satisfied from the 2^10 pool. */
for ( i = 1; i < BUFFER_POOL_FIRST; ++i )
{
buffers.pool[i] = buffers.pool[BUFFER_POOL_FIRST];
}
for ( i = BUFFER_POOL_FIRST + 1; i <= BUFFER_POOL_LAST; ++i )
{
buffers.pool[i] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS, 1);
buffers.pool[i]->buffer_size = 1 << i;
}
#endif
}
#if defined(HB_FIFO_DEBUG)
static void dump_fifo(hb_fifo_t * f)
{
hb_buffer_t * b = f->first;
if (b)
{
while (b)
{
fprintf(stderr, "%p:%d:%d\n", b, b->size, b->alloc);
b = b->next;
}
fprintf(stderr, "\n");
}
}
static void fifo_list_add( hb_fifo_t * f )
{
hb_fifo_t *next = fifo_list.next;
fifo_list.next = f;
f->next = next;
}
static void fifo_list_rem( hb_fifo_t * f )
{
hb_fifo_t *next, *prev;
prev = &fifo_list;
next = fifo_list.next;
while ( next && next != f )
{
prev = next;
next = next->next;
}
if ( next == f )
{
prev->next = f->next;
}
}
#if !defined(HB_NO_BUFFER_POOL)
// These routines are useful for finding and debugging problems
// with the fifos and buffer pools
static void buffer_pool_validate( hb_fifo_t * f )
{
hb_buffer_t *b;
hb_lock( f->lock );
b = f->first;
while (b)
{
if (b->alloc != f->buffer_size)
{
fprintf(stderr, "Invalid buffer pool size! buf %p size %d pool size %d\n", b, b->alloc, f->buffer_size);
dump_fifo( f );
*(char*)0 = 1;
}
b = b->next;
}
hb_unlock( f->lock );
}
static void buffer_pools_validate( void )
{
int ii;
for ( ii = BUFFER_POOL_FIRST; ii <= BUFFER_POOL_LAST; ++ii )
{
buffer_pool_validate( buffers.pool[ii] );
}
}
void fifo_list_validate( void )
{
hb_fifo_t *next = fifo_list.next;
hb_fifo_t *m;
hb_buffer_t *b, *c;
int count;
buffer_pools_validate();
while ( next )
{
count = 0;
hb_lock( next->lock );
b = next->first;
// Count the number of entries in this fifo
while (b)
{
c = b->next;
// check that the current buffer is not duplicated in this fifo
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
// check that the current buffer is not duplicated in another fifo
m = next->next;
while (m)
{
hb_lock( m->lock );
c = m->first;
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in another fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
hb_unlock( m->lock );
m = m->next;
}
count++;
b = b->next;
}
if ( count != next->size )
{
fprintf(stderr, "Invalid fifo size! count %d size %d\n", count, next->size);
dump_fifo(next);
*(char*)0 = 1;
}
hb_unlock( next->lock );
next = next->next;
}
}
#endif
#endif
void hb_buffer_pool_free( void )
{
int i;
int64_t freed = 0;
hb_lock(buffers.lock);
#if defined(HB_BUFFER_DEBUG)
hb_deep_log(2, "leaked %d buffers", hb_list_count(buffers.alloc_list));
for (i = 0; i < hb_list_count(buffers.alloc_list); i++)
{
hb_buffer_t *b = hb_list_item(buffers.alloc_list, i);
hb_deep_log(2, "leaked buffer %p type %d size %d alloc %d",
b, b->s.type, b->size, b->alloc);
}
#endif
#if !defined(HB_NO_BUFFER_POOL)
hb_buffer_t * b;
int count;
for( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i)
{
count = 0;
while( ( b = hb_fifo_get(buffers.pool[i]) ) )
{
if( b->data )
{
freed += b->alloc;
av_free(b->data);
}
free( b );
count++;
}
if ( count )
{
hb_deep_log( 2, "Freed %d buffers of size %d", count,
buffers.pool[i]->buffer_size);
}
}
#endif
#if defined(HB_BUFFER_DEBUG) && defined(HB_NO_BUFFER_POOL)
// defining HB_BUFFER_DEBUG and HB_NO_BUFFER_POOL allows tracking
// buffer memory leaks using valgrind. The source of the leak
// can be determined with "valgrind --leak-check=full"
for (i = 0; i < hb_list_count(buffers.alloc_list); i++)
{
hb_buffer_t *b = hb_list_item(buffers.alloc_list, i);
hb_list_rem(buffers.alloc_list, b);
}
#endif
hb_deep_log( 2, "Allocated %"PRId64" bytes of buffers on this pass and Freed %"PRId64" bytes, "
"%"PRId64" bytes leaked", buffers.allocated, freed, buffers.allocated - freed);
buffers.allocated = 0;
hb_unlock(buffers.lock);
}
static hb_fifo_t *size_to_pool( int size )
{
#if !defined(HB_NO_BUFFER_POOL)
int i;
for ( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i )
{
if ( size <= (1 << i) )
{
return buffers.pool[i];
}
}
#endif
return NULL;
}
hb_buffer_t * hb_buffer_init_internal( int size )
{
hb_buffer_t * b;
// Certain libraries (hrm ffmpeg) expect buffers passed to them to
// end on certain alignments (ffmpeg is 8). So allocate some extra bytes.
// Note that we can't simply align the end of our buffer because
// sometimes we feed data to these libraries starting from arbitrary
// points within the buffer.
int alloc = size + AV_INPUT_BUFFER_PADDING_SIZE;
hb_fifo_t *buffer_pool = size_to_pool( alloc );
if( buffer_pool )
{
b = hb_fifo_get( buffer_pool );
if( b )
{
/*
* Zero the contents of the buffer, would be nice if we
* didn't have to do this.
*/
uint8_t *data = b->data;
memset( b, 0, sizeof(hb_buffer_t) );
b->alloc = buffer_pool->buffer_size;
b->size = size;
b->data = data;
b->s.start = AV_NOPTS_VALUE;
b->s.stop = AV_NOPTS_VALUE;
b->s.renderOffset = AV_NOPTS_VALUE;
b->s.scr_sequence = -1;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_add(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
return( b );
}
}
/*
* No existing buffers, create a new one
*/
if( !( b = calloc( sizeof( hb_buffer_t ), 1 ) ) )
{
hb_error( "out of memory" );
return NULL;
}
b->size = size;
b->alloc = buffer_pool ? buffer_pool->buffer_size : alloc;
if (size)
{
b->data = av_malloc(b->alloc);
if( !b->data )
{
hb_error( "out of memory" );
free( b );
return NULL;
}
#if defined(HB_BUFFER_DEBUG)
memset(b->data, 0, b->size);
#endif
hb_lock(buffers.lock);
buffers.allocated += b->alloc;
hb_unlock(buffers.lock);
}
b->s.start = AV_NOPTS_VALUE;
b->s.stop = AV_NOPTS_VALUE;
b->s.renderOffset = AV_NOPTS_VALUE;
b->s.scr_sequence = -1;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_add(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
return b;
}
hb_buffer_t * hb_buffer_init( int size )
{
return hb_buffer_init_internal(size);
}
hb_buffer_t * hb_buffer_eof_init(void)
{
hb_buffer_t * buf = hb_buffer_init(0);
buf->s.flags = HB_BUF_FLAG_EOF;
return buf;
}
void hb_buffer_realloc( hb_buffer_t * b, int size )
{
if ( size > b->alloc || b->data == NULL )
{
uint8_t * tmp;
uint32_t orig = b->data != NULL ? b->alloc : 0;
hb_fifo_t * buffer_pool = size_to_pool(size);
if (buffer_pool != NULL)
{
size = buffer_pool->buffer_size;
}
tmp = av_malloc(size);
if (tmp == NULL)
{
return;
}
if (b->data != NULL)
{
memcpy(tmp, b->data, b->alloc);
av_free(b->data);
}
b->data = tmp;
b->alloc = size;
hb_lock(buffers.lock);
buffers.allocated += size - orig;
hb_unlock(buffers.lock);
}
}
void hb_buffer_reduce( hb_buffer_t * b, int size )
{
if ( size < b->alloc / 8 || b->data == NULL )
{
hb_buffer_t * tmp = hb_buffer_init( size );
hb_buffer_swap_copy( b, tmp );
memcpy( b->data, tmp->data, size );
tmp->next = NULL;
hb_buffer_close( &tmp );
}
}
hb_buffer_t * hb_buffer_dup( const hb_buffer_t * src )
{
hb_buffer_t * buf;
if ( src == NULL )
return NULL;
buf = hb_buffer_init( src->size );
if ( buf )
{
memcpy( buf->data, src->data, src->size );
buf->s = src->s;
buf->f = src->f;
if ( buf->s.type == FRAME_BUF )
hb_buffer_init_planes( buf );
}
#if HB_PROJECT_FEATURE_QSV
memcpy(&buf->qsv_details, &src->qsv_details, sizeof(src->qsv_details));
#endif
return buf;
}
int hb_buffer_copy(hb_buffer_t * dst, const hb_buffer_t * src)
{
if (src == NULL || dst == NULL)
return -1;
if ( dst->size < src->size )
return -1;
memcpy( dst->data, src->data, src->size );
dst->s = src->s;
dst->f = src->f;
if (dst->s.type == FRAME_BUF)
hb_buffer_init_planes(dst);
return 0;
}
void hb_buffer_init_planes(hb_buffer_t * b)
{
uint8_t * data = b->data;
int pp;
for( pp = 0; pp <= b->f.max_plane; pp++ )
{
b->plane[pp].data = data;
b->plane[pp].stride = hb_image_stride(b->f.fmt, b->f.width, pp);
b->plane[pp].height_stride = hb_image_height_stride(b->f.fmt,
b->f.height, pp);
b->plane[pp].width = hb_image_width(b->f.fmt, b->f.width, pp);
b->plane[pp].height = hb_image_height(b->f.fmt, b->f.height, pp);
b->plane[pp].size = b->plane[pp].stride *
b->plane[pp].height_stride;
data += b->plane[pp].size;
}
}
// this routine gets a buffer for an uncompressed picture
// with pixel format pix_fmt and dimensions width x height.
hb_buffer_t * hb_frame_buffer_init( int pix_fmt, int width, int height )
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(pix_fmt);
hb_buffer_t * buf;
uint8_t has_plane[4] = {0,};
int ii, pp, max_plane = 0;
if (desc == NULL)
{
return NULL;
}
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
pp = desc->comp[ii].plane;
if (pp > max_plane)
{
max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride( pix_fmt, width, pp ) *
hb_image_height_stride( pix_fmt, height, pp );
}
}
buf = hb_buffer_init_internal(size);
if( buf == NULL )
return NULL;
buf->f.max_plane = max_plane;
buf->s.type = FRAME_BUF;
buf->f.width = width;
buf->f.height = height;
buf->f.fmt = pix_fmt;
hb_buffer_init_planes(buf);
return buf;
}
void hb_frame_buffer_blank_stride(hb_buffer_t * buf)
{
uint8_t * data;
int pp, yy, width, height, stride, height_stride;
for (pp = 0; pp <= buf->f.max_plane; pp++)
{
data = buf->plane[pp].data;
width = buf->plane[pp].width;
height = buf->plane[pp].height;
stride = buf->plane[pp].stride;
height_stride = buf->plane[pp].height_stride;
if (data != NULL)
{
// Blank right margin
for (yy = 0; yy < height; yy++)
{
memset(data + yy * stride + width, 0x80, stride - width);
}
// Blank bottom margin
for (yy = height; yy < height_stride; yy++)
{
memset(data + yy * stride, 0x80, stride);
}
}
}
}
void hb_frame_buffer_mirror_stride(hb_buffer_t * buf)
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(buf->f.fmt);
uint8_t * data;
int pp, ii, yy, width, height, stride, height_stride;
int bps, pos, margin, margin_front, margin_back;
bps = desc->comp[0].depth > 8 ? 2 : 1;
for (pp = 0; pp <= buf->f.max_plane; pp++)
{
data = buf->plane[pp].data;
width = buf->plane[pp].width;
height = buf->plane[pp].height;
stride = buf->plane[pp].stride;
height_stride = buf->plane[pp].height_stride;
if (data != NULL)
{
margin = stride / bps - width;
margin_front = margin / 2;
margin_back = margin - margin_front;
width *= bps;
for (yy = 0; yy < height; yy++)
{
// Mirror final row pixels into front of stride region
pos = yy * stride + width;
for (ii = 0; ii < margin_back; ii++)
{
*(data + pos + ii) = *(data + pos - ii - 1);
}
// Mirror start of next row into end of stride region
pos = (yy + 1) * stride - 1;
for (ii = 0; ii < margin_front; ii++)
{
*(data + pos - ii) = *(data + pos + ii + 1);
}
}
// Mirror bottom rows into height_stride
pos = height * stride;
for (ii = 0; ii < height_stride - height; ii++)
{
memcpy(data + pos + ii * stride,
data + pos - ((ii + 1) * stride), stride);
}
}
}
}
// this routine reallocs a buffer for an uncompressed YUV420 video frame
// with dimensions width x height.
void hb_video_buffer_realloc( hb_buffer_t * buf, int width, int height )
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(buf->f.fmt);
uint8_t has_plane[4] = {0,};
int ii, pp;
if (desc == NULL)
{
return;
}
buf->f.max_plane = 0;
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
pp = desc->comp[ii].plane;
if (pp > buf->f.max_plane)
{
buf->f.max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride(buf->f.fmt, width, pp) *
hb_image_height_stride(buf->f.fmt, height, pp );
}
}
hb_buffer_realloc(buf, size );
buf->f.width = width;
buf->f.height = height;
buf->size = size;
hb_buffer_init_planes(buf);
}
// this routine 'moves' data from src to dst by interchanging 'data',
// 'size' & 'alloc' between them and copying the rest of the fields
// from src to dst.
void hb_buffer_swap_copy( hb_buffer_t *src, hb_buffer_t *dst )
{
uint8_t *data = dst->data;
int size = dst->size;
int alloc = dst->alloc;
*dst = *src;
src->data = data;
src->size = size;
src->alloc = alloc;
}
// Frees the specified buffer list.
void hb_buffer_close( hb_buffer_t ** _b )
{
hb_buffer_t * b = *_b;
while( b )
{
#if HB_PROJECT_FEATURE_QSV
// Reclaim QSV resources before dropping the buffer.
// when decoding without QSV, the QSV atom will be NULL.
if(b->qsv_details.frame && b->qsv_details.ctx != NULL)
{
mfxFrameSurface1 *surface = (mfxFrameSurface1*)b->qsv_details.frame->data[3];
if(surface)
{
hb_qsv_release_surface_from_pool_by_surface_pointer(b->qsv_details.qsv_frames_ctx, surface);
b->qsv_details.frame->data[3] = 0;
}
av_frame_unref(b->qsv_details.frame);
}
if (b->qsv_details.qsv_atom != NULL && b->qsv_details.ctx != NULL)
{
hb_qsv_stage *stage = hb_qsv_get_last_stage(b->qsv_details.qsv_atom);
if (stage != NULL)
{
hb_qsv_wait_on_sync(b->qsv_details.ctx, stage);
if (stage->out.sync->in_use > 0)
{
ff_qsv_atomic_dec(&stage->out.sync->in_use);
}
if (stage->out.p_surface->Data.Locked > 0)
{
ff_qsv_atomic_dec(&stage->out.p_surface->Data.Locked);
}
}
hb_qsv_flush_stages(b->qsv_details.ctx->pipes,
(hb_qsv_list**)&b->qsv_details.qsv_atom);
}
#endif
hb_buffer_t * next = b->next;
hb_fifo_t *buffer_pool = size_to_pool( b->alloc );
b->next = NULL;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_rem(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
if( buffer_pool && b->data && !hb_fifo_is_full( buffer_pool ) )
{
#if defined(HB_BUFFER_DEBUG)
if (hb_fifo_contains(buffer_pool, b))
{
hb_error("hb_buffer_close: buffer %p already freed", b);
assert(0);
}
#endif
hb_fifo_push_head( buffer_pool, b );
b = next;
continue;
}
// either the pool is full or this size doesn't use a pool
// free the buf
if( b->data )
{
av_free(b->data);
hb_lock(buffers.lock);
buffers.allocated -= b->alloc;
hb_unlock(buffers.lock);
}
free( b );
b = next;
}
*_b = NULL;
}
hb_image_t * hb_image_init(int pix_fmt, int width, int height)
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(pix_fmt);
uint8_t has_plane[4] = {0,};
int ii, pp;
if (desc == NULL)
{
return NULL;
}
hb_image_t *image = calloc(1, sizeof(hb_image_t));
if (image == NULL)
{
return NULL;
}
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
// For non-planar formats, comp[ii].plane can contain the
// same value for multiple comp.
pp = desc->comp[ii].plane;
if (pp > image->max_plane)
{
image->max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride( pix_fmt, width, pp ) *
hb_image_height_stride( pix_fmt, height, pp );
}
}
image->data = av_malloc(size);
if (image->data == NULL)
{
free(image);
return NULL;
}
image->format = pix_fmt;
image->width = width;
image->height = height;
memset(image->data, 0, size);
uint8_t * data = image->data;
for (pp = 0; pp <= image->max_plane; pp++)
{
image->plane[pp].data = data;
image->plane[pp].stride = hb_image_stride(pix_fmt, width, pp);
image->plane[pp].height_stride =
hb_image_height_stride(pix_fmt, height, pp);
image->plane[pp].width = hb_image_width(pix_fmt, width, pp);
image->plane[pp].height = hb_image_height(pix_fmt, height, pp);
image->plane[pp].size = image->plane[pp].stride *
image->plane[pp].height_stride;
data += image->plane[pp].size;
}
return image;
}
hb_image_t * hb_buffer_to_image(hb_buffer_t *buf)
{
hb_image_t *image = calloc(1, sizeof(hb_image_t));
image->data = av_malloc( buf->size );
if (image->data == NULL)
{
free(image);
return NULL;
}
image->format = buf->f.fmt;
image->width = buf->f.width;
image->height = buf->f.height;
image->color_prim = buf->f.color_prim;
image->color_transfer = buf->f.color_transfer;
image->color_matrix = buf->f.color_matrix;
memcpy(image->data, buf->data, buf->size);
int p;
uint8_t *data = image->data;
for (p = 0; p <= buf->f.max_plane; p++)
{
image->plane[p].data = data;
image->plane[p].width = buf->plane[p].width;
image->plane[p].height = buf->plane[p].height;
image->plane[p].stride = buf->plane[p].stride;
image->plane[p].height_stride = buf->plane[p].height_stride;
image->plane[p].size = buf->plane[p].size;
data += image->plane[p].size;
}
return image;
}
void hb_image_close(hb_image_t **_image)
{
if (_image == NULL)
return;
hb_image_t * image = *_image;
if (image != NULL)
{
av_free(image->data);
free(image);
*_image = NULL;
}
}
hb_fifo_t * hb_fifo_init( int capacity, int thresh )
{
hb_fifo_t * f;
f = calloc( sizeof( hb_fifo_t ), 1 );
f->lock = hb_lock_init();
f->cond_full = hb_cond_init();
f->cond_empty = hb_cond_init();
f->capacity = capacity;
f->thresh = thresh;
f->buffer_size = 0;
#if defined(HB_FIFO_DEBUG)
// Add the fifo to the global fifo list
fifo_list_add( f );
#endif
return f;
}
void hb_fifo_register_full_cond( hb_fifo_t * f, hb_cond_t * c )
{
f->cond_alert_full = c;
}
int hb_fifo_size_bytes( hb_fifo_t * f )
{
int ret = 0;
hb_buffer_t * link;
hb_lock( f->lock );
link = f->first;
while ( link )
{
ret += link->size;
link = link->next;
}
hb_unlock( f->lock );
return ret;
}
int hb_fifo_size( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = f->size;
hb_unlock( f->lock );
return ret;
}
int hb_fifo_is_full( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = ( f->size >= f->capacity );
hb_unlock( f->lock );
return ret;
}
float hb_fifo_percent_full( hb_fifo_t * f )
{
float ret;
hb_lock( f->lock );
ret = f->size / f->capacity;
hb_unlock( f->lock );
return ret;
}
// Pulls the first packet out of this FIFO, blocking until such a packet is available.
// Returns NULL if this FIFO has been closed or flushed.
hb_buffer_t * hb_fifo_get_wait( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
f->wait_empty = 1;
hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
}