forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproj.py
1189 lines (1014 loc) · 37.6 KB
/
proj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from copy import deepcopy
from itertools import count
import numpy as np
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..fixes import _safe_svd
from ..utils import (
_check_option,
_validate_type,
fill_doc,
logger,
object_diff,
verbose,
warn,
)
from .constants import FIFF
from .pick import _ELECTRODE_CH_TYPES, _electrode_types, pick_info, pick_types
from .tag import _rename_list, find_tag
from .tree import dir_tree_find
from .write import (
_safe_name_list,
end_block,
start_block,
write_float,
write_float_matrix,
write_int,
write_name_list_sanitized,
write_string,
)
class Projection(dict):
"""Dictionary-like object holding a projection vector.
Projection vectors are stored in a list in ``inst.info["projs"]``. Each projection
vector has 5 keys: ``active``, ``data``, ``desc``, ``explained_var``, ``kind``.
.. warning:: This class is generally not meant to be instantiated
directly, use ``compute_proj_*`` functions instead.
Parameters
----------
data : dict
The data dictionary.
desc : str
The projector description.
kind : int
The projector kind.
active : bool
Whether or not the projector has been applied.
explained_var : float | None
The proportion of explained variance.
"""
def __init__(
self,
*,
data,
desc="",
kind=FIFF.FIFFV_PROJ_ITEM_FIELD,
active=False,
explained_var=None,
):
super().__init__(
desc=desc, kind=kind, active=active, data=data, explained_var=explained_var
)
def __repr__(self): # noqa: D105
s = str(self["desc"])
s += f", active : {self['active']}"
s += f", n_channels : {len(self['data']['col_names'])}"
if self["explained_var"] is not None:
s += f', exp. var : {self["explained_var"] * 100:0.2f}%'
return f"<Projection | {s}>"
# speed up info copy by taking advantage of mutability
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
cls = self.__class__
result = cls.__new__(cls)
for k, v in self.items():
if k == "data":
v = v.copy()
v["data"] = v["data"].copy()
result[k] = v
else:
result[k] = v # kind, active, desc, explained_var immutable
return result
def __eq__(self, other):
"""Equality == method."""
return True if len(object_diff(self, other)) == 0 else False
def __ne__(self, other):
"""Different != method."""
return not self.__eq__(other)
@fill_doc
def plot_topomap(
self,
info,
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
show=True,
):
"""Plot topographic maps of SSP projections.
Parameters
----------
%(info_not_none)s Used to determine the layout.
%(sensors_topomap)s
%(show_names_topomap)s
.. versionadded:: 1.2
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 1.2
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_proj)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
.. versionadded:: 1.2
%(units_topomap)s
.. versionadded:: 1.2
%(axes_plot_projs_topomap)s
%(show)s
Returns
-------
fig : instance of Figure
Figure distributing one image per channel across sensor topography.
Notes
-----
.. versionadded:: 0.15.0
""" # noqa: E501
from ..viz.topomap import plot_projs_topomap
return plot_projs_topomap(
self,
info,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
show=show,
)
class ProjMixin:
"""Mixin class for Raw, Evoked, Epochs.
Notes
-----
This mixin adds a proj attribute as a property to data containers.
It is True if at least one proj is present and all of them are active.
The projs might not be applied yet if data are not preloaded. In
this case it's the _projector attribute that does the job.
If a private _data attribute is present then the projs applied
to it are the ones marked as active.
A proj parameter passed in constructor of raw or epochs calls
apply_proj and hence after the .proj attribute is True.
As soon as you've applied the projs it will stay active in the
remaining pipeline.
The suggested pipeline is proj=True in epochs (it's cheaper than for raw).
When you use delayed SSP in Epochs, projs are applied when you call
get_data() method. They are not applied to the evoked._data unless you call
apply_proj(). The reason is that you want to reject with projs although
it's not stored in proj mode.
"""
@property
def proj(self):
"""Whether or not projections are active."""
return len(self.info["projs"]) > 0 and all(
p["active"] for p in self.info["projs"]
)
@verbose
def add_proj(self, projs, remove_existing=False, verbose=None):
"""Add SSP projection vectors.
Parameters
----------
projs : list
List with projection vectors.
remove_existing : bool
Remove the projection vectors currently in the file.
%(verbose)s
Returns
-------
self : instance of Raw | Epochs | Evoked
The data container.
"""
if isinstance(projs, Projection):
projs = [projs]
if not isinstance(projs, list) and not all(
isinstance(p, Projection) for p in projs
):
raise ValueError("Only projs can be added. You supplied something else.")
# mark proj as inactive, as they have not been applied
projs = deactivate_proj(projs, copy=True)
if remove_existing:
# we cannot remove the proj if they are active
if any(p["active"] for p in self.info["projs"]):
raise ValueError(
"Cannot remove projectors that have already been applied"
)
with self.info._unlock():
self.info["projs"] = projs
else:
self.info["projs"].extend(projs)
# We don't want to add projectors that are activated again.
with self.info._unlock():
self.info["projs"] = _uniquify_projs(
self.info["projs"], check_active=False, sort=False
)
return self
@verbose
def apply_proj(self, verbose=None):
"""Apply the signal space projection (SSP) operators to the data.
Parameters
----------
%(verbose)s
Returns
-------
self : instance of Raw | Epochs | Evoked
The instance.
Notes
-----
Once the projectors have been applied, they can no longer be
removed. It is usually not recommended to apply the projectors at
too early stages, as they are applied automatically later on
(e.g. when computing inverse solutions).
Hint: using the copy method individual projection vectors
can be tested without affecting the original data.
With evoked data, consider the following example::
projs_a = mne.read_proj('proj_a.fif')
projs_b = mne.read_proj('proj_b.fif')
# add the first, copy, apply and see ...
evoked.add_proj(a).copy().apply_proj().plot()
# add the second, copy, apply and see ...
evoked.add_proj(b).copy().apply_proj().plot()
# drop the first and see again
evoked.copy().del_proj(0).apply_proj().plot()
evoked.apply_proj() # finally keep both
"""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
if self.info["projs"] is None or len(self.info["projs"]) == 0:
logger.info(
"No projector specified for this dataset. "
"Please consider the method self.add_proj."
)
return self
# Exit delayed mode if you apply proj
if isinstance(self, BaseEpochs) and self._do_delayed_proj:
logger.info("Leaving delayed SSP mode.")
self._do_delayed_proj = False
if all(p["active"] for p in self.info["projs"]):
logger.info(
"Projections have already been applied. "
"Setting proj attribute to True."
)
return self
_projector, info = setup_proj(
deepcopy(self.info), add_eeg_ref=False, activate=True
)
# let's not raise a RuntimeError here, otherwise interactive plotting
if _projector is None: # won't be fun.
logger.info("The projections don't apply to these data. Doing nothing.")
return self
self._projector, self.info = _projector, info
if isinstance(self, BaseRaw | Evoked):
if self.preload:
self._data = np.dot(self._projector, self._data)
else: # BaseEpochs
if self.preload:
for ii, e in enumerate(self._data):
self._data[ii] = self._project_epoch(e)
else:
self.load_data() # will automatically apply
logger.info("SSP projectors applied...")
return self
def del_proj(self, idx="all"):
"""Remove SSP projection vector.
.. note:: The projection vector can only be removed if it is inactive
(has not been applied to the data).
Parameters
----------
idx : int | list of int | str
Index of the projector to remove. Can also be "all" (default)
to remove all projectors.
Returns
-------
self : instance of Raw | Epochs | Evoked
The instance.
"""
if isinstance(idx, str) and idx == "all":
idx = list(range(len(self.info["projs"])))
idx = np.atleast_1d(np.array(idx, int)).ravel()
for ii in idx:
proj = self.info["projs"][ii]
if proj["active"] and set(self.info["ch_names"]) & set(
proj["data"]["col_names"]
):
msg = (
f"Cannot remove projector that has already been "
f"applied, unless you first remove all channels it "
f"applies to. The problematic projector is: {proj}"
)
raise ValueError(msg)
keep = np.ones(len(self.info["projs"]))
keep[idx] = False # works with negative indexing and does checks
with self.info._unlock():
self.info["projs"] = [p for p, k in zip(self.info["projs"], keep) if k]
return self
@fill_doc
def plot_projs_topomap(
self,
ch_type=None,
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.1f",
units=None,
axes=None,
show=True,
):
"""Plot SSP vector.
Parameters
----------
%(ch_type_topomap_proj)s
%(sensors_topomap)s
%(show_names_topomap)s
.. versionadded:: 1.2
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.20
.. versionchanged:: 0.21
- The default was changed to ``'local'`` for MEG sensors.
- ``'local'`` was changed to use a convex hull mask
- ``'head'`` was changed to extrapolate out to the clipping circle.
%(border_topomap)s
.. versionadded:: 0.20
%(res_topomap)s
%(size_topomap)s
Only applies when plotting multiple topomaps at a time.
%(cmap_topomap)s
%(vlim_plot_topomap_proj)s
%(cnorm)s
.. versionadded:: 1.2
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
.. versionadded:: 1.2
%(units_topomap)s
.. versionadded:: 1.2
%(axes_plot_projs_topomap)s
%(show)s
Returns
-------
fig : instance of Figure
Figure distributing one image per channel across sensor topography.
"""
_projs = [deepcopy(_proj) for _proj in self.info["projs"]]
if _projs is None or len(_projs) == 0:
raise ValueError("No projectors in Info; nothing to plot.")
if ch_type is not None:
# make sure the requested channel type(s) exist
_validate_type(ch_type, (str, list, tuple), "ch_type")
if isinstance(ch_type, str):
ch_type = [ch_type]
bad_ch_types = [_type not in self for _type in ch_type]
if any(bad_ch_types):
raise ValueError(
f"ch_type {ch_type[bad_ch_types]} not "
f"present in {self.__class__.__name__}."
)
# remove projs from unrequested channel types. This is a bit
# convoluted because Projection objects don't store channel types,
# only channel names
available_ch_types = np.array(self.get_channel_types())
for _proj in _projs[::-1]:
idx = np.isin(self.ch_names, _proj["data"]["col_names"])
proj_ch_type = np.unique(available_ch_types[idx])
err_msg = "Projector contains multiple channel types"
assert len(proj_ch_type) == 1, err_msg
if proj_ch_type[0] != ch_type:
_projs.remove(_proj)
if len(_projs) == 0:
raise ValueError(
f"Nothing to plot (no projectors for channel type {ch_type})."
)
# now we have non-empty _projs list with correct channel type(s)
from ..viz.topomap import plot_projs_topomap
fig = plot_projs_topomap(
_projs,
self.info,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
show=show,
)
return fig
def _reconstruct_proj(self, mode="accurate", origin="auto"):
from ..forward import _map_meg_or_eeg_channels
if len(self.info["projs"]) == 0:
return self
self.apply_proj()
for kind in ("meg", "eeg"):
kwargs = dict(meg=False)
kwargs[kind] = True
picks = pick_types(self.info, **kwargs)
if len(picks) == 0:
continue
info_from = pick_info(self.info, picks)
info_to = info_from.copy()
with info_to._unlock():
info_to["projs"] = []
if kind == "eeg" and _has_eeg_average_ref_proj(info_from):
info_to["projs"] = [
make_eeg_average_ref_proj(info_to, verbose=False)
]
mapping = _map_meg_or_eeg_channels(
info_from, info_to, mode=mode, origin=origin
)
self.data[..., picks, :] = np.matmul(mapping, self.data[..., picks, :])
return self
def _proj_equal(a, b, check_active=True):
"""Test if two projectors are equal."""
equal = (
(a["active"] == b["active"] or not check_active)
and a["kind"] == b["kind"]
and a["desc"] == b["desc"]
and a["data"]["col_names"] == b["data"]["col_names"]
and a["data"]["row_names"] == b["data"]["row_names"]
and a["data"]["ncol"] == b["data"]["ncol"]
and a["data"]["nrow"] == b["data"]["nrow"]
and np.all(a["data"]["data"] == b["data"]["data"])
)
return equal
@verbose
def _read_proj(fid, node, *, ch_names_mapping=None, verbose=None):
ch_names_mapping = {} if ch_names_mapping is None else ch_names_mapping
projs = list()
# Locate the projection data
nodes = dir_tree_find(node, FIFF.FIFFB_PROJ)
if len(nodes) == 0:
return projs
# This might exist but we won't use it:
# global_nchan = None
# tag = find_tag(fid, nodes[0], FIFF.FIFF_NCHAN)
# if tag is not None:
# global_nchan = int(tag.data.item())
items = dir_tree_find(nodes[0], FIFF.FIFFB_PROJ_ITEM)
for item in items:
# Find all desired tags in one item
# This probably also exists but used to be written incorrectly
# sometimes
# tag = find_tag(fid, item, FIFF.FIFF_NCHAN)
# if tag is not None:
# nchan = int(tag.data.item())
# else:
# nchan = global_nchan
tag = find_tag(fid, item, FIFF.FIFF_DESCRIPTION)
if tag is not None:
desc = tag.data
else:
tag = find_tag(fid, item, FIFF.FIFF_NAME)
if tag is not None:
desc = tag.data
else:
raise ValueError("Projection item description missing")
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_KIND)
if tag is not None:
kind = int(tag.data.item())
else:
raise ValueError("Projection item kind missing")
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_NVEC)
if tag is not None:
nvec = int(tag.data.item())
else:
raise ValueError("Number of projection vectors not specified")
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST)
if tag is not None:
names = _safe_name_list(tag.data, "read", "names")
else:
raise ValueError("Projection item channel list missing")
tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_VECTORS)
if tag is not None:
data = tag.data
else:
raise ValueError("Projection item data missing")
tag = find_tag(fid, item, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE)
if tag is not None:
active = bool(tag.data.item())
else:
active = False
tag = find_tag(fid, item, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR)
if tag is not None:
explained_var = float(tag.data.item())
else:
explained_var = None
# handle the case when data is transposed for some reason
if data.shape[0] == len(names) and data.shape[1] == nvec:
data = data.T
if data.shape[1] != len(names):
raise ValueError(
"Number of channel names does not match the size of data matrix"
)
# just always use this, we used to have bugs with writing the
# number correctly...
nchan = len(names)
names[:] = _rename_list(names, ch_names_mapping)
# Use exactly the same fields in data as in a named matrix
one = Projection(
kind=kind,
active=active,
desc=desc,
data=dict(
nrow=nvec, ncol=nchan, row_names=None, col_names=names, data=data
),
explained_var=explained_var,
)
projs.append(one)
if len(projs) > 0:
logger.info(f" Read a total of {len(projs)} projection items:")
for proj in projs:
misc = "active" if proj["active"] else " idle"
logger.info(
f' {proj["desc"]} '
f'({proj["data"]["nrow"]} x '
f'{len(proj["data"]["col_names"])}) {misc}'
)
return projs
###############################################################################
# Write
def _write_proj(fid, projs, *, ch_names_mapping=None):
"""Write a projection operator to a file.
Parameters
----------
fid : file
The file descriptor of the open file.
projs : dict
The projection operator.
"""
if len(projs) == 0:
return
ch_names_mapping = dict() if ch_names_mapping is None else ch_names_mapping
# validation
_validate_type(projs, (list, tuple), "projs")
for pi, proj in enumerate(projs):
_validate_type(proj, Projection, f"projs[{pi}]")
start_block(fid, FIFF.FIFFB_PROJ)
for proj in projs:
start_block(fid, FIFF.FIFFB_PROJ_ITEM)
write_int(fid, FIFF.FIFF_NCHAN, len(proj["data"]["col_names"]))
names = _rename_list(proj["data"]["col_names"], ch_names_mapping)
write_name_list_sanitized(
fid, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST, names, "col_names"
)
write_string(fid, FIFF.FIFF_NAME, proj["desc"])
write_int(fid, FIFF.FIFF_PROJ_ITEM_KIND, proj["kind"])
if proj["kind"] == FIFF.FIFFV_PROJ_ITEM_FIELD:
write_float(fid, FIFF.FIFF_PROJ_ITEM_TIME, 0.0)
write_int(fid, FIFF.FIFF_PROJ_ITEM_NVEC, proj["data"]["nrow"])
write_int(fid, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE, proj["active"])
write_float_matrix(fid, FIFF.FIFF_PROJ_ITEM_VECTORS, proj["data"]["data"])
if proj["explained_var"] is not None:
write_float(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, proj["explained_var"])
end_block(fid, FIFF.FIFFB_PROJ_ITEM)
end_block(fid, FIFF.FIFFB_PROJ)
###############################################################################
# Utils
def _check_projs(projs, copy=True):
"""Check that projs is a list of Projection."""
_validate_type(projs, (list, tuple), "projs")
for pi, p in enumerate(projs):
_validate_type(p, Projection, f"projs[{pi}]")
return deepcopy(projs) if copy else projs
def make_projector(projs, ch_names, bads=(), include_active=True):
"""Create an SSP operator from SSP projection vectors.
Parameters
----------
projs : list
List of projection vectors.
ch_names : list of str
List of channels to include in the projection matrix.
bads : list of str
Some bad channels to exclude. If bad channels were marked
in the raw file when projs were calculated using mne-python,
they should not need to be included here as they will
have been automatically omitted from the projectors.
include_active : bool
Also include projectors that are already active.
Returns
-------
proj : array of shape [n_channels, n_channels]
The projection operator to apply to the data.
nproj : int
How many items in the projector.
U : array
The orthogonal basis of the projection vectors.
"""
return _make_projector(projs, ch_names, bads, include_active)
def _make_projector(projs, ch_names, bads=(), include_active=True, inplace=False):
"""Subselect projs based on ch_names and bads.
Use inplace=True mode to modify ``projs`` inplace so that no
warning will be raised next time projectors are constructed with
the given inputs. If inplace=True, no meaningful data are returned.
"""
nchan = len(ch_names)
if nchan == 0:
raise ValueError("No channel names specified")
default_return = (np.eye(nchan, nchan), 0, np.empty((nchan, 0)))
# Check trivial cases first
if projs is None:
return default_return
nvec = 0
nproj = 0
for p in projs:
if not p["active"] or include_active:
nproj += 1
nvec += p["data"]["nrow"]
if nproj == 0:
return default_return
# Pick the appropriate entries
vecs = np.zeros((nchan, nvec))
nvec = 0
nonzero = 0
bads = set(bads)
for k, p in enumerate(projs):
if not p["active"] or include_active:
if len(p["data"]["col_names"]) != len(np.unique(p["data"]["col_names"])):
raise ValueError(
f"Channel name list in projection item {k}"
" contains duplicate items"
)
# Get the two selection vectors to pick correct elements from
# the projection vectors omitting bad channels
sel = []
vecsel = []
p_set = set(p["data"]["col_names"]) # faster membership access
for c, name in enumerate(ch_names):
if name not in bads and name in p_set:
sel.append(c)
vecsel.append(p["data"]["col_names"].index(name))
# If there is something to pick, pickit
nrow = p["data"]["nrow"]
this_vecs = vecs[:, nvec : nvec + nrow]
if len(sel) > 0:
this_vecs[sel] = p["data"]["data"][:, vecsel].T
# Rescale for better detection of small singular values
for v in range(p["data"]["nrow"]):
psize = np.linalg.norm(this_vecs[:, v])
if psize > 0:
orig_n = p["data"]["data"].any(axis=0).sum()
# Average ref still works if channels are removed
# Use relative power to determine if we're in trouble.
# 10% loss is hopefully a reasonable threshold.
if (
psize < 0.9
and not inplace
and (
p["kind"] != FIFF.FIFFV_PROJ_ITEM_EEG_AVREF
or len(vecsel) == 1
)
):
warn(
f'Projection vector {repr(p["desc"])} has been '
f"reduced to {100 * psize:0.2f}% of its "
"original magnitude by subselecting "
f"{len(vecsel)}/{orig_n} of the original "
"channels. If the ignored channels were bad "
"during SSP computation, we recommend "
"recomputing proj (via compute_proj_raw "
"or related functions) with the bad channels "
"properly marked, because computing SSP with bad "
"channels present in the data but unmarked is "
"dangerous (it can bias the PCA used by SSP). "
"On the other hand, if you know that all channels "
"were good during SSP computation, you can safely "
"use info.normalize_proj() to suppress this "
"warning during projection."
)
this_vecs[:, v] /= psize
nonzero += 1
# If doing "inplace" mode, "fix" the projectors to only operate
# on this subset of channels.
if inplace:
p["data"]["data"] = this_vecs[sel].T
p["data"]["col_names"] = [p["data"]["col_names"][ii] for ii in vecsel]
p["data"]["ncol"] = len(p["data"]["col_names"])
nvec += p["data"]["nrow"]
# Check whether all of the vectors are exactly zero
if nonzero == 0 or inplace:
return default_return
# Reorthogonalize the vectors
U, S, _ = _safe_svd(vecs[:, :nvec], full_matrices=False)
# Throw away the linearly dependent guys
nproj = np.sum((S / S[0]) > 1e-2)
U = U[:, :nproj]
# Here is the celebrated result
proj = np.eye(nchan, nchan) - np.dot(U, U.T)
if nproj >= nchan: # e.g., 3 channels and 3 projectors
raise RuntimeError(
f"Application of {nproj} projectors for {nchan} channels "
"will yield no components."
)
return proj, nproj, U
def _normalize_proj(info):
"""Normalize proj after subselection to avoid warnings.
This is really only useful for tests, and might not be needed
eventually if we change or improve our handling of projectors
with picks.
"""
# Here we do info.get b/c info can actually be a noise cov
_make_projector(
info["projs"],
info.get("ch_names", info.get("names")),
info["bads"],
include_active=True,
inplace=True,
)
@fill_doc
def make_projector_info(info, include_active=True):
"""Make an SSP operator using the measurement info.
Calls make_projector on good channels.
Parameters
----------
%(info_not_none)s
include_active : bool
Also include projectors that are already active.
Returns
-------
proj : array of shape [n_channels, n_channels]
The projection operator to apply to the data.
nproj : int
How many items in the projector.
"""
proj, nproj, _ = make_projector(
info["projs"], info["ch_names"], info["bads"], include_active
)
return proj, nproj
@verbose
def activate_proj(projs, copy=True, verbose=None):
"""Set all projections to active.
Useful before passing them to make_projector.
Parameters
----------
projs : list
The projectors.
copy : bool
Modify projs in place or operate on a copy.
%(verbose)s
Returns
-------
projs : list
The projectors.
"""
if copy:
projs = deepcopy(projs)
# Activate the projection items
for proj in projs:
proj["active"] = True
logger.info(f"{len(projs)} projection items activated")
return projs
@verbose
def deactivate_proj(projs, copy=True, verbose=None):
"""Set all projections to inactive.
Useful before saving raw data without projectors applied.
Parameters
----------
projs : list
The projectors.
copy : bool
Modify projs in place or operate on a copy.
%(verbose)s
Returns
-------
projs : list
The projectors.
"""
if copy:
projs = deepcopy(projs)
# Deactivate the projection items
for proj in projs:
proj["active"] = False
logger.info(f"{len(projs)} projection items deactivated")
return projs
# Keep in sync with doc below
_EEG_AVREF_PICK_DICT = {k: True for k in _ELECTRODE_CH_TYPES}
@verbose
def make_eeg_average_ref_proj(info, activate=True, *, ch_type="eeg", verbose=None):
"""Create an EEG average reference SSP projection vector.
Parameters
----------
%(info_not_none)s
activate : bool
If True projections are activated.
ch_type : str