forked from colinoflynn/pico-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathps5000a.py
380 lines (320 loc) · 15.7 KB
/
ps5000a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# This is the instrument-specific file for the PS5000 series of instruments.
#
# pico-python is Copyright (c) 2013-2014 By:
# Colin O'Flynn <[email protected]>
# Mark Harfouche <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""
This is the low level driver file for a specific Picoscope.
By this, I mean if parameters want to get passed as strings, they should be
handled by PSBase
All functions here should take things as close to integers as possible, the
only exception here is for array parameters. Array parameters should be passed
in a pythonic way through numpy since the PSBase class should not be aware of
the specifics behind how the clib is called.
The functions should not have any default values as these should be handled
by PSBase.
"""
from __future__ import division
import math
# to load the proper dll
import platform
# Do not import or use ill definied data types
# such as short int or long
# use the values specified in the h file
# float is always defined as 32 bits
# double is defined as 64 bits
from ctypes import byref, POINTER, create_string_buffer, c_float, \
c_int16, c_int32, c_uint32, c_void_p
from ctypes import c_int32 as c_enum
from picobase import PSBase
class PS5000a(PSBase):
"""The following are low-level functions for the PS5000"""
LIBNAME = "ps5000a"
NUM_CHANNELS = 4
CHANNELS = {"A": 0, "B": 1, "C": 2, "D": 3,
"External": 4, "MaxChannels": 4, "TriggerAux": 5}
ADC_RESOLUTIONS = {"8":0, "12":1, "14":2, "15":3, "16":4};
CHANNEL_RANGE = [{"rangeV":10E-3, "apivalue":0, "rangeStr":"10 mV"},
{"rangeV":20E-3, "apivalue":1, "rangeStr":"20 mV"},
{"rangeV":50E-3, "apivalue":2, "rangeStr":"50 mV"},
{"rangeV":100E-3, "apivalue":3, "rangeStr":"100 mV"},
{"rangeV":200E-3, "apivalue":4, "rangeStr":"200 mV"},
{"rangeV":500E-3, "apivalue":5, "rangeStr":"500 mV"},
{"rangeV":1.0, "apivalue":6, "rangeStr":"1 V"},
{"rangeV":2.0, "apivalue":7, "rangeStr":"2 V"},
{"rangeV":5.0, "apivalue":8, "rangeStr":"5 V"},
{"rangeV":10.0, "apivalue":9, "rangeStr":"10 V"},
{"rangeV":20.0, "apivalue":10, "rangeStr":"20 V"},
{"rangeV":50.0, "apivalue":11, "rangeStr":"50 V"},
]
CHANNEL_COUPLINGS = {"DC":1, "AC":0}
#has_sig_gen = True
WAVE_TYPES = {"Sine": 0, "Square": 1, "Triangle": 2,
"RampUp": 3, "RampDown": 4,
"Sinc": 5, "Gaussian": 6, "HalfSine": 7, "DCVoltage": 8,
"WhiteNoise": 9}
SIGGEN_TRIGGER_TYPES = {"Rising": 0, "Falling": 1,
"GateHigh": 2, "GateLow": 3}
SIGGEN_TRIGGER_SOURCES = {"None": 0, "ScopeTrig": 1, "AuxIn": 2,
"ExtIn": 3, "SoftTrig": 4, "TriggerRaw": 5}
# This is actually different depending on the AB/CD models
# I wonder how we could detect the difference between the oscilloscopes
# I believe we can obtain this information from the setInfo function
# by readign the hardware version
# for the PS6403B version, the hardware version is "1 1",
# an other possibility is that the PS6403B shows up as 6403 when using
# VARIANT_INFO and others show up as PS6403X where X = A,C or D
AWGPhaseAccumulatorSize = 32
AWGBufferAddressWidth = 14
AWGMaxSamples = 2 ** AWGBufferAddressWidth
AWGDACInterval = 5E-9 # in seconds
AWGDACFrequency = 1 / AWGDACInterval
# Note this is NOT what is written in the Programming guide as of version
# 10_5_0_28
# This issue was acknowledged in this thread
# http://www.picotech.com/support/topic13217.html
AWGMaxVal = 0x0FFF
AWGMinVal = 0x0000
AWG_INDEX_MODES = {"Single": 0, "Dual": 1, "Quad": 2}
MAX_VALUE_8BIT = 32512
MIN_VALUE_8BIT = -32512
MAX_VALUE_OTHER = 32767
MIN_VALUE_OTHER = -32767
EXT_RANGE_VOLTS = 5
def __init__(self, serialNumber=None, connect=True):
"""Load DLL etc"""
if platform.system() == 'Linux':
from ctypes import cdll
self.lib = cdll.LoadLibrary("lib" + self.LIBNAME + ".so")
else:
from ctypes import windll
self.lib = windll.LoadLibrary(self.LIBNAME + ".dll")
self.resolution = self.ADC_RESOLUTIONS["8"]
super(PS5000a, self).__init__(serialNumber, connect)
def _lowLevelOpenUnit(self, sn):
c_handle = c_int16()
if sn is not None:
serialNullTermStr = create_string_buffer(sn)
else:
serialNullTermStr = None
# Passing None is the same as passing NULL
m = self.lib.ps5000aOpenUnit(byref(c_handle), serialNullTermStr, self.resolution)
self.checkResult(m)
self.handle = c_handle.value
def _lowLevelCloseUnit(self):
m = self.lib.ps5000aCloseUnit(c_int16(self.handle))
self.checkResult(m)
def _lowLevelSetChannel(self, chNum, enabled, coupling, VRange, VOffset,
BWLimited):
m = self.lib.ps5000aSetChannel(c_int16(self.handle), c_enum(chNum),
c_int16(enabled), c_enum(coupling),
c_enum(VRange), c_float(VOffset))
self.checkResult(m)
def _lowLevelStop(self):
m = self.lib.ps5000aStop(c_int16(self.handle))
self.checkResult(m)
def _lowLevelGetUnitInfo(self, info):
s = create_string_buffer(256)
requiredSize = c_int16(0)
m = self.lib.ps5000aGetUnitInfo(c_int16(self.handle), byref(s),
c_int16(len(s)), byref(requiredSize),
c_enum(info))
self.checkResult(m)
if requiredSize.value > len(s):
s = create_string_buffer(requiredSize.value + 1)
m = self.lib.ps5000aGetUnitInfo(c_int16(self.handle), byref(s),
c_int16(len(s)),
byref(requiredSize), c_enum(info))
self.checkResult(m)
return s.value
def _lowLevelFlashLed(self, times):
m = self.lib.ps5000aFlashLed(c_int16(self.handle), c_int16(times))
self.checkResult(m)
def _lowLevelSetSimpleTrigger(self, enabled, trigsrc, threshold_adc,
direction, timeout_ms, auto):
m = self.lib.ps5000aSetSimpleTrigger(
c_int16(self.handle), c_int16(enabled),
c_enum(trigsrc), c_int16(threshold_adc),
c_enum(direction), c_uint32(timeout_ms), c_int16(auto))
self.checkResult(m)
def _lowLevelRunBlock(self, numPreTrigSamples, numPostTrigSamples,
timebase, oversample, segmentIndex):
#NOT: Oversample is NOT used!
timeIndisposedMs = c_int32()
m = self.lib.ps5000aRunBlock(
c_int16(self.handle), c_uint32(numPreTrigSamples),
c_uint32(numPostTrigSamples), c_uint32(timebase),
byref(timeIndisposedMs), c_uint32(segmentIndex),
c_void_p(), c_void_p())
self.checkResult(m)
return timeIndisposedMs.value
def _lowLevelIsReady(self):
ready = c_int16()
m = self.lib.ps5000aIsReady(c_int16(self.handle), byref(ready))
self.checkResult(m)
if ready.value:
return True
else:
return False
def _lowLevelGetTimebase(self, tb, noSamples, oversample, segmentIndex):
""" returns (timeIntervalSeconds, maxSamples) """
maxSamples = c_int32()
sampleRate = c_float()
m = self.lib.ps5000aGetTimebase2(c_int16(self.handle), c_uint32(tb),
c_uint32(noSamples), byref(sampleRate),
byref(maxSamples), c_uint32(segmentIndex))
self.checkResult(m)
return (sampleRate.value / 1.0E9, maxSamples.value)
def getTimeBaseNum(self, sampleTimeS):
"""Convert sample time in S to something to pass to API Call"""
if self.resolution == self.ADC_RESOLUTIONS["8"]:
maxSampleTime = (((2 ** 32 - 1) - 2) / 125000000)
if sampleTimeS < 8.0E-9:
st = math.floor(math.log(sampleTimeS * 1E9, 2))
st = max(st, 0)
else:
if sampleTimeS > maxSampleTime:
sampleTimeS = maxSampleTime
st = math.floor((sampleTimeS * 125000000) + 2)
elif self.resolution == self.ADC_RESOLUTIONS["12"]:
maxSampleTime = (((2 ** 32 - 1) - 3) / 62500000)
if sampleTimeS < 16.0E-9:
st = math.floor(math.log(sampleTimeS * 5E8, 2)) + 1
st = max(st, 1)
else:
if sampleTimeS > maxSampleTime:
sampleTimeS = maxSampleTime
st = math.floor((sampleTimeS * 62500000) + 3)
elif (self.resolution == self.ADC_RESOLUTIONS["14"]) or (self.resolution == self.ADC_RESOLUTIONS["15"]):
maxSampleTime = (((2 ** 32 - 1) - 2) / 125000000)
if sampleTimeS > maxSampleTime:
sampleTimeS = maxSampleTime
st = math.floor((sampleTimeS * 125000000) + 2)
st = max(st, 3)
elif self.resolution == self.ADC_RESOLUTIONS["16"]:
maxSampleTime = (((2 ** 32 - 1) - 3) / 62500000)
if sampleTimeS > maxSampleTime:
sampleTimeS = maxSampleTime
st = math.floor((sampleTimeS * 62500000) + 3)
st = max(st, 3)
else:
raise ValueError("Invalid Resolution for Device?")
# is this cast needed?
st = int(st)
return st
def getTimestepFromTimebase(self, timebase):
if self.resolution == self.ADC_RESOLUTIONS["8"]:
if timebase < 3:
dt = 2. ** timebase / 1.0E9
else:
dt = (timebase - 2.0) / 125000000.
elif self.resolution == self.ADC_RESOLUTIONS["12"]:
if timebase < 4:
dt = 2. ** (timebase-1) / 5.0E8
else:
dt = (timebase - 3.0) / 62500000.
elif (self.resolution == self.ADC_RESOLUTIONS["14"]) or (self.resolution == self.ADC_RESOLUTIONS["15"]):
dt = (timebase - 2.0) / 125000000.
elif self.resolution == self.ADC_RESOLUTIONS["16"]:
dt = (timebase - 3.0) / 62500000.
return dt
def _lowLevelSetAWGSimpleDeltaPhase(self, waveform, deltaPhase,
offsetVoltage, pkToPk, indexMode,
shots, triggerType, triggerSource):
""" waveform should be an array of shorts """
waveformPtr = waveform.ctypes.data_as(POINTER(c_int16))
m = self.lib.ps5000aSetSigGenArbitrary(
c_int16(self.handle),
c_uint32(int(offsetVoltage * 1E6)), # offset voltage in microvolts
c_uint32(int(pkToPk * 1E6)), # pkToPk in microvolts
c_uint32(int(deltaPhase)), # startDeltaPhase
c_uint32(int(deltaPhase)), # stopDeltaPhase
c_uint32(0), # deltaPhaseIncrement
c_uint32(0), # dwellCount
waveformPtr, # arbitraryWaveform
c_int32(len(waveform)), # arbitraryWaveformSize
c_enum(0), # sweepType for deltaPhase
c_enum(0), # operation (adding random noise and whatnot)
c_enum(indexMode), # single, dual, quad
c_uint32(shots),
c_uint32(0), # sweeps
c_uint32(triggerType),
c_uint32(triggerSource),
c_int16(0)) # extInThreshold
self.checkResult(m)
def _lowLevelSetDataBuffer(self, channel, data, downSampleMode, segmentIndex):
"""
data should be a numpy array
Be sure to call _lowLevelClearDataBuffer
when you are done with the data array
or else subsequent calls to GetValue will still use the same array.
"""
dataPtr = data.ctypes.data_as(POINTER(c_int16))
numSamples = len(data)
m = self.lib.ps5000aSetDataBuffer(c_int16(self.handle), c_enum(channel),
dataPtr, c_int32(numSamples),
c_uint32(segmentIndex),
c_enum(downSampleMode))
self.checkResult(m)
def _lowLevelClearDataBuffer(self, channel, segmentIndex):
""" data should be a numpy array"""
m = self.lib.ps5000aSetDataBuffer(c_int16(self.handle), c_enum(channel),
c_void_p(), c_uint32(0), c_uint32(segmentIndex),
c_enum(0))
self.checkResult(m)
def _lowLevelGetValues(self, numSamples, startIndex, downSampleRatio,
downSampleMode, segmentIndex):
numSamplesReturned = c_uint32()
numSamplesReturned.value = numSamples
overflow = c_int16()
m = self.lib.ps5000aGetValues(
c_int16(self.handle), c_uint32(startIndex),
byref(numSamplesReturned), c_uint32(downSampleRatio),
c_enum(downSampleMode), c_uint32(segmentIndex),
byref(overflow))
self.checkResult(m)
return (numSamplesReturned.value, overflow.value)
def _lowLevelSetSigGenBuiltInSimple(self, offsetVoltage, pkToPk, waveType,
frequency, shots, triggerType,
triggerSource):
# TODO, I just noticed that V2 exists
# Maybe change to V2 in the future
m = self.lib.ps5000aSetSigGenBuiltIn(
c_int16(self.handle),
c_int32(int(offsetVoltage * 1000000)),
c_int32(int(pkToPk * 1000000)),
c_int16(waveType),
c_float(frequency), c_float(frequency),
c_float(0), c_float(0), c_enum(0), c_enum(0),
c_uint32(shots), c_uint32(0),
c_enum(triggerType), c_enum(triggerSource),
c_int16(0))
self.checkResult(m)
def _lowLevelSetDeviceResolution(self, resolution):
self.resolution = resolution
m = self.lib.ps5000aSetDeviceResolution(
c_int16(self.handle),
c_enum(resolution))
self.checkResult(m)