forked from AUTOMATIC1111/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemmon.py
85 lines (64 loc) · 2.39 KB
/
memmon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import threading
import time
from collections import defaultdict
import torch
class MemUsageMonitor(threading.Thread):
run_flag = None
device = None
disabled = False
opts = None
data = None
def __init__(self, name, device, opts):
threading.Thread.__init__(self)
self.name = name
self.device = device
self.opts = opts
self.daemon = True
self.run_flag = threading.Event()
self.data = defaultdict(int)
try:
torch.cuda.mem_get_info()
torch.cuda.memory_stats(self.device)
except Exception as e: # AMD or whatever
print(f"Warning: caught exception '{e}', memory monitor disabled")
self.disabled = True
def run(self):
if self.disabled:
return
while True:
self.run_flag.wait()
torch.cuda.reset_peak_memory_stats()
self.data.clear()
if self.opts.memmon_poll_rate <= 0:
self.run_flag.clear()
continue
self.data["min_free"] = torch.cuda.mem_get_info()[0]
while self.run_flag.is_set():
free, total = torch.cuda.mem_get_info() # calling with self.device errors, torch bug?
self.data["min_free"] = min(self.data["min_free"], free)
time.sleep(1 / self.opts.memmon_poll_rate)
def dump_debug(self):
print(self, 'recorded data:')
for k, v in self.read().items():
print(k, -(v // -(1024 ** 2)))
print(self, 'raw torch memory stats:')
tm = torch.cuda.memory_stats(self.device)
for k, v in tm.items():
if 'bytes' not in k:
continue
print('\t' if 'peak' in k else '', k, -(v // -(1024 ** 2)))
print(torch.cuda.memory_summary())
def monitor(self):
self.run_flag.set()
def read(self):
if not self.disabled:
free, total = torch.cuda.mem_get_info()
self.data["total"] = total
torch_stats = torch.cuda.memory_stats(self.device)
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
self.data["system_peak"] = total - self.data["min_free"]
return self.data
def stop(self):
self.run_flag.clear()
return self.read()