forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobil_planner.cc
329 lines (290 loc) · 13.9 KB
/
mobil_planner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#include "drake/automotive/mobil_planner.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <utility>
#include <vector>
#include "drake/automotive/maliput/api/junction.h"
#include "drake/automotive/maliput/api/segment.h"
#include "drake/common/cond.h"
#include "drake/common/drake_assert.h"
#include "drake/math/saturate.h"
namespace drake {
using maliput::api::GeoPosition;
using maliput::api::Lane;
using maliput::api::LanePosition;
using maliput::api::RoadGeometry;
using maliput::api::RoadPosition;
using math::saturate;
using systems::BasicVector;
using systems::rendering::FrameVelocity;
using systems::rendering::PoseBundle;
using systems::rendering::PoseVector;
namespace automotive {
template <typename T>
MobilPlanner<T>::MobilPlanner(const RoadGeometry& road, bool initial_with_s,
RoadPositionStrategy road_position_strategy,
double period_sec)
: road_(road),
with_s_(initial_with_s),
road_position_strategy_(road_position_strategy),
ego_pose_index_{
this->DeclareVectorInputPort(PoseVector<T>()).get_index()},
ego_velocity_index_{
this->DeclareVectorInputPort(FrameVelocity<T>()).get_index()},
ego_acceleration_index_{
this->DeclareVectorInputPort(BasicVector<T>(1)).get_index()},
traffic_index_{this->DeclareAbstractInputPort().get_index()},
lane_index_{
this->DeclareAbstractOutputPort(&MobilPlanner::CalcLaneDirection)
.get_index()} {
// Validate the provided RoadGeometry.
DRAKE_DEMAND(road_.num_junctions() > 0);
DRAKE_DEMAND(road_.junction(0)->num_segments() > 0);
DRAKE_DEMAND(road_.junction(0)->segment(0)->num_lanes() > 0);
this->DeclareNumericParameter(IdmPlannerParameters<T>());
this->DeclareNumericParameter(MobilPlannerParameters<T>());
// TODO(jadecastro) It is possible to replace the following AbstractState with
// a caching sceme once #4364 lands, preventing the need to use abstract
// states and periodic sampling time.
if (road_position_strategy == RoadPositionStrategy::kCache) {
this->DeclareAbstractState(systems::AbstractValue::Make<RoadPosition>(
RoadPosition()));
this->DeclarePeriodicUnrestrictedUpdate(period_sec, 0);
}
}
template <typename T>
const systems::InputPortDescriptor<T>& MobilPlanner<T>::ego_pose_input() const {
return systems::System<T>::get_input_port(ego_pose_index_);
}
template <typename T>
const systems::InputPortDescriptor<T>& MobilPlanner<T>::ego_velocity_input()
const {
return systems::System<T>::get_input_port(ego_velocity_index_);
}
template <typename T>
const systems::InputPortDescriptor<T>& MobilPlanner<T>::ego_acceleration_input()
const {
return systems::System<T>::get_input_port(ego_acceleration_index_);
}
template <typename T>
const systems::InputPortDescriptor<T>& MobilPlanner<T>::traffic_input() const {
return systems::System<T>::get_input_port(traffic_index_);
}
template <typename T>
const systems::OutputPort<T>& MobilPlanner<T>::lane_output() const {
return systems::System<T>::get_output_port(lane_index_);
}
template <typename T>
void MobilPlanner<T>::CalcLaneDirection(const systems::Context<T>& context,
LaneDirection* lane_direction) const {
// Obtain the parameters.
const IdmPlannerParameters<T>& idm_params =
this->template GetNumericParameter<IdmPlannerParameters>(context,
kIdmParamsIndex);
const MobilPlannerParameters<T>& mobil_params =
this->template GetNumericParameter<MobilPlannerParameters>(
context, kMobilParamsIndex);
// Obtain the input/output data structures.
const PoseVector<T>* const ego_pose =
this->template EvalVectorInput<PoseVector>(context, ego_pose_index_);
DRAKE_ASSERT(ego_pose != nullptr);
const FrameVelocity<T>* const ego_velocity =
this->template EvalVectorInput<FrameVelocity>(context,
ego_velocity_index_);
DRAKE_ASSERT(ego_velocity != nullptr);
const BasicVector<T>* const ego_accel_command =
this->template EvalVectorInput<BasicVector>(context,
ego_acceleration_index_);
DRAKE_ASSERT(ego_accel_command != nullptr);
const PoseBundle<T>* const traffic_poses =
this->template EvalInputValue<PoseBundle<T>>(context, traffic_index_);
DRAKE_ASSERT(traffic_poses != nullptr);
// Obtain the state if we've allocated it.
RoadPosition ego_rp;
if (context.template get_state().get_abstract_state().size() != 0) {
DRAKE_ASSERT(context.get_num_abstract_states() == 1);
ego_rp = context.template get_abstract_state<RoadPosition>(0);
}
ImplCalcLaneDirection(*ego_pose, *ego_velocity, *traffic_poses,
*ego_accel_command, idm_params, mobil_params,
ego_rp, lane_direction);
}
template <typename T>
void MobilPlanner<T>::ImplCalcLaneDirection(
const PoseVector<T>& ego_pose, const FrameVelocity<T>& ego_velocity,
const PoseBundle<T>& traffic_poses, const BasicVector<T>& ego_accel_command,
const IdmPlannerParameters<T>& idm_params,
const MobilPlannerParameters<T>& mobil_params,
const RoadPosition& ego_rp,
LaneDirection* lane_direction) const {
DRAKE_DEMAND(idm_params.IsValid());
DRAKE_DEMAND(mobil_params.IsValid());
RoadPosition ego_position = ego_rp;
if (!ego_rp.lane) {
const auto gp = GeoPosition::FromXyz(ego_pose.get_isometry().translation());
ego_position = road_.ToRoadPosition(gp, nullptr, nullptr, nullptr);
}
// Prepare a list of (possibly nullptr) Lanes to evaluate.
std::pair<const Lane*, const Lane*> lanes = std::make_pair(
ego_position.lane->to_left(), ego_position.lane->to_right());
const Lane* lane = ego_position.lane;
if (lanes.first != nullptr || lanes.second != nullptr) {
const ClosestPose<T> ego_closest_pose(
RoadOdometry<T>(ego_position, ego_velocity), 0.);
const std::pair<T, T> incentives =
ComputeIncentives(lanes, idm_params, mobil_params, ego_closest_pose,
ego_pose, traffic_poses, ego_accel_command[0]);
// Switch to the lane with the highest incentive score greater than zero,
// staying in the same lane if under the threshold.
const T threshold = mobil_params.threshold();
if (incentives.first >= incentives.second)
lane = (incentives.first > threshold) ? lanes.first : ego_position.lane;
else
lane = (incentives.second > threshold) ? lanes.second : ego_position.lane;
}
*lane_direction = LaneDirection(lane, with_s_);
// N.B. Assumes neighboring lanes are all confluent (i.e. with_s points in the
// same direction).
}
template <typename T>
const std::pair<T, T> MobilPlanner<T>::ComputeIncentives(
const std::pair<const Lane*, const Lane*> lanes,
const IdmPlannerParameters<T>& idm_params,
const MobilPlannerParameters<T>& mobil_params,
const ClosestPose<T>& ego_closest_pose, const PoseVector<T>& ego_pose,
const PoseBundle<T>& traffic_poses, const T& ego_acceleration) const {
// Initially disincentivize both neighboring lane options. N.B. The first and
// second elements correspond to the left and right lanes, respectively.
std::pair<T, T> incentives(-kDefaultLargeAccel, -kDefaultLargeAccel);
DRAKE_DEMAND(ego_closest_pose.odometry.lane != nullptr);
const ClosestPoses current_closest_poses = PoseSelector<T>::FindClosestPair(
ego_closest_pose.odometry.lane, ego_pose, traffic_poses,
idm_params.scan_ahead_distance(), ScanStrategy::kPath);
// Construct ClosestPose containers for the leading, trailing, and ego car.
const ClosestPose<T>& leading_closest_pose =
current_closest_poses.at(AheadOrBehind::kAhead);
const ClosestPose<T>& trailing_closest_pose =
current_closest_poses.at(AheadOrBehind::kBehind);
// Current acceleration of the trailing car.
const T trailing_this_old_accel =
EvaluateIdm(idm_params, trailing_closest_pose, ego_closest_pose);
// New acceleration of the trailing car if the ego were to change lanes.
const T trailing_this_new_accel =
EvaluateIdm(idm_params, trailing_closest_pose, leading_closest_pose);
// Acceleration delta of the trailing car in the ego car's current lane.
const T trailing_delta_accel_this =
trailing_this_new_accel - trailing_this_old_accel;
// Compute the incentive for the left lane.
if (lanes.first != nullptr) {
const ClosestPoses left_closest_poses = PoseSelector<T>::FindClosestPair(
lanes.first, ego_pose, traffic_poses, idm_params.scan_ahead_distance(),
ScanStrategy::kPath);
ComputeIncentiveOutOfLane(idm_params, mobil_params, left_closest_poses,
ego_closest_pose, ego_acceleration,
trailing_delta_accel_this, &incentives.first);
}
// Compute the incentive for the right lane.
if (lanes.second != nullptr) {
const ClosestPoses right_closest_poses =
PoseSelector<T>::FindClosestPair(lanes.second, ego_pose, traffic_poses,
idm_params.scan_ahead_distance(),
ScanStrategy::kPath);
ComputeIncentiveOutOfLane(idm_params, mobil_params, right_closest_poses,
ego_closest_pose, ego_acceleration,
trailing_delta_accel_this, &incentives.second);
}
return incentives;
}
template <typename T>
void MobilPlanner<T>::ComputeIncentiveOutOfLane(
const IdmPlannerParameters<T>& idm_params,
const MobilPlannerParameters<T>& mobil_params,
const ClosestPoses& closest_poses, const ClosestPose<T>& ego_closest_pose,
const T& ego_old_accel, const T& trailing_delta_accel_this,
T* incentive) const {
const ClosestPose<T>& leading_closest_pose =
closest_poses.at(AheadOrBehind::kAhead);
const ClosestPose<T>& trailing_closest_pose =
closest_poses.at(AheadOrBehind::kBehind);
// Acceleration of the ego car if it were to move to the neighboring lane.
const T ego_new_accel =
EvaluateIdm(idm_params, ego_closest_pose, leading_closest_pose);
// Original acceleration of the trailing car in the neighboring lane.
const T trailing_old_accel =
EvaluateIdm(idm_params, trailing_closest_pose, leading_closest_pose);
// Acceleration of the trailing car in the neighboring lane if the ego moves
// here.
const T trailing_new_accel =
EvaluateIdm(idm_params, trailing_closest_pose, ego_closest_pose);
// Acceleration delta of the trailing car in the neighboring (other) lane.
const T trailing_delta_accel_other = trailing_new_accel - trailing_old_accel;
const T ego_delta_accel = ego_new_accel - ego_old_accel;
// Do not switch to this lane if it discomforts the trailing car too much.
if (trailing_new_accel < -mobil_params.max_deceleration()) return;
// Compute the incentive as a weighted sum of the net accelerations for
// the ego and each immediate neighbor.
*incentive = ego_delta_accel +
mobil_params.p() *
(trailing_delta_accel_other + trailing_delta_accel_this);
}
template <typename T>
const T MobilPlanner<T>::EvaluateIdm(
const IdmPlannerParameters<T>& idm_params,
const ClosestPose<T>& trailing_closest_pose,
const ClosestPose<T>& leading_closest_pose) const {
using std::abs;
const T headway_distance =
leading_closest_pose.distance + trailing_closest_pose.distance;
// Saturate the net_distance at distance_lower_limit away from the ego car to
// prevent the IDM equation from producing near-singular solutions.
// TODO(jadecastro): Move this to IdmPlanner::Evaluate().
const T net_distance =
cond(headway_distance >= T(0.),
saturate(headway_distance - idm_params.bloat_diameter(),
idm_params.distance_lower_limit(),
std::numeric_limits<T>::infinity()),
saturate(headway_distance + idm_params.bloat_diameter(),
-std::numeric_limits<T>::infinity(),
-idm_params.distance_lower_limit()));
DRAKE_DEMAND(std::abs(net_distance) >= idm_params.distance_lower_limit());
const RoadOdometry<T> trailing_car_odometry(
{trailing_closest_pose.odometry.lane, trailing_closest_pose.odometry.pos},
trailing_closest_pose.odometry.vel);
const T& s_dot_behind =
(abs(trailing_car_odometry.pos.s()) == std::numeric_limits<T>::infinity())
? 0.
: PoseSelector<T>::GetSigmaVelocity(trailing_car_odometry);
const RoadOdometry<T> leading_car_odometry(
{leading_closest_pose.odometry.lane, leading_closest_pose.odometry.pos},
leading_closest_pose.odometry.vel);
const T& s_dot_ahead =
(abs(leading_car_odometry.pos.s()) == std::numeric_limits<T>::infinity())
? 0.
: PoseSelector<T>::GetSigmaVelocity(leading_car_odometry);
const T closing_velocity = s_dot_behind - s_dot_ahead;
return IdmPlanner<T>::Evaluate(idm_params, s_dot_behind, net_distance,
closing_velocity);
}
template <typename T>
void MobilPlanner<T>::DoCalcUnrestrictedUpdate(
const systems::Context<T>& context,
const std::vector<const systems::UnrestrictedUpdateEvent<T>*>&,
systems::State<T>* state) const {
DRAKE_ASSERT(context.get_num_abstract_states() == 1);
// Obtain the input and state data.
const PoseVector<T>* const ego_pose =
this->template EvalVectorInput<PoseVector>(context, ego_pose_index_);
DRAKE_ASSERT(ego_pose != nullptr);
const FrameVelocity<T>* const ego_velocity =
this->template EvalVectorInput<FrameVelocity>(context,
ego_velocity_index_);
DRAKE_ASSERT(ego_velocity != nullptr);
RoadPosition& rp =
state->template get_mutable_abstract_state<RoadPosition>(0);
CalcOngoingRoadPosition(*ego_pose, *ego_velocity, road_, &rp);
}
// These instantiations must match the API documentation in mobil_planner.h.
template class MobilPlanner<double>;
} // namespace automotive
} // namespace drake