Adds support for selected Spark classes to PureConfig.
In addition to core PureConfig, you'll need:
libraryDependencies += "com.github.pureconfig" %% "pureconfig-spark" % "0.17.4"
Also, pureconfig-spark
depends on spark-sql
with provided
scope.
Spark libraries are generally added on runtime.
This module has been tested on Spark 3 but it should also work for Spark 2.4 since basic datatype APIs should stay the same.
Please note that we are only supporting Scala 2.12 for all Spark versions.
To use the Spark module you need to import:
import pureconfig.module.spark._
org.apache.spark.sql.types.DataType
org.apache.spark.sql.types.StructType
org.apache.spark.sql.types.Metadata
org.apache.spark.sql.types.StructField
Setup custom schema case classes and converters between custom schema and Spark schema.
import org.apache.spark.sql.types._
import pureconfig._
import pureconfig.generic.auto._
import pureconfig.module.spark.sql._
import com.typesafe.config.ConfigRenderOptions
case class MySchema(name: String, fields: List[StructField], someOtherSetting: Option[String])
def mySchemaToSparkSchema(schema: MySchema): StructType =
StructType(schema.fields)
def sparkSchemaToMySchema(name: String, schema: StructType): MySchema =
MySchema(name, schema.fields.toList, None)
val renderOpt = ConfigRenderOptions.defaults.setOriginComments(false)
Convert custom schema to Spark and back to custom schema. Resultant string schema should match original source.
val mySchemaRes = ConfigSource.string(
"""name: Employee,
|fields: [
| { name: name, data-type: string }, #types are case-insensitive and some types have variations/truncations
| { name: age, data-type: integer, nullable = false, metadata = "{\"k\": \"v\"}" }, #also note that `nullable` and `metadata` are optional fields with Spark defaults
| { name: salary, data-type: "decimal(6,2)" },
| { name: address, data-type: "line1 string, line2 string" } #outer `struct` is optional
|]
|""".stripMargin).load[MySchema]
// mySchemaRes: ConfigReader.Result[MySchema] = Right(
// MySchema(
// "Employee",
// List(
// StructField("name", StringType, true, {}),
// StructField("age", IntegerType, false, {"k":"v"}),
// StructField("salary", DecimalType(6, 2), true, {}),
// StructField(
// "address",
// StructType(
// StructField("line1", StringType, true, {}),
// StructField("line2", StringType, true, {})
// ),
// true,
// {}
// )
// ),
// None
// )
// )
val sparkSchemaRes = mySchemaRes.map(mySchemaToSparkSchema)
// sparkSchemaRes: Either[error.ConfigReaderFailures, StructType] = Right(
// StructType(
// StructField("name", StringType, true, {}),
// StructField("age", IntegerType, false, {"k":"v"}),
// StructField("salary", DecimalType(6, 2), true, {}),
// StructField(
// "address",
// StructType(
// StructField("line1", StringType, true, {}),
// StructField("line2", StringType, true, {})
// ),
// true,
// {}
// )
// )
// )
val mySchemaRes2 =
for {
mySchema <- mySchemaRes
sparkSchema <- sparkSchemaRes
} yield sparkSchemaToMySchema(mySchema.name, sparkSchema)
// mySchemaRes2: Either[error.ConfigReaderFailures, MySchema] = Right(
// MySchema(
// "Employee",
// List(
// StructField("name", StringType, true, {}),
// StructField("age", IntegerType, false, {"k":"v"}),
// StructField("salary", DecimalType(6, 2), true, {}),
// StructField(
// "address",
// StructType(
// StructField("line1", StringType, true, {}),
// StructField("line2", StringType, true, {})
// ),
// true,
// {}
// )
// ),
// None
// )
// )
val stringSchemaRes = mySchemaRes2.map(ConfigWriter[MySchema].to(_).render(renderOpt))
// stringSchemaRes: Either[error.ConfigReaderFailures, String] = Right(
// """{
// "fields" : [
// {
// "data-type" : "STRING",
// "metadata" : "{}",
// "name" : "name",
// "nullable" : true
// },
// {
// "data-type" : "INT",
// "metadata" : "{\"k\":\"v\"}",
// "name" : "age",
// "nullable" : false
// },
// {
// "data-type" : "DECIMAL(6,2)",
// "metadata" : "{}",
// "name" : "salary",
// "nullable" : true
// },
// {
// "data-type" : "STRUCT<line1: STRING, line2: STRING>",
// "metadata" : "{}",
// "name" : "address",
// "nullable" : true
// }
// ],
// "name" : "Employee"
// }
// """
// )
Note: containsNull
/nullable
/metadata
optional fields for ArrayType
or SructFields
within StructType
will be lost from encoding as Spark does not encode them in their DDL encoding.
case class MyConfig(field: StructField, obj: DataType, arr: DataType)
val meta = Metadata.fromJson("{\"k\": \"v\"}")
// meta: Metadata = {"k":"v"}
val myConfigString = ConfigWriter[MyConfig].to(MyConfig(
StructField("a", StringType, nullable = false, metadata = meta), //nullable/metadata will be kept within HOCON structure
StructType(StructField("b", StringType, nullable = false, metadata = meta) :: Nil), //nullable/metadata will be lost from DDL string encoding
ArrayType(StringType, containsNull = false) //containsNull will be lost
)).render(renderOpt)
// myConfigString: String = """{
// "arr" : "ARRAY<STRING>",
// "field" : {
// "data-type" : "STRING",
// "metadata" : "{\"k\":\"v\"}",
// "name" : "a",
// "nullable" : false
// },
// "obj" : "STRUCT<b: STRING>"
// }
// """
//lost optional values will be set to their defaults
val myConfigRes = ConfigSource.string(myConfigString).load[MyConfig]
// myConfigRes: ConfigReader.Result[MyConfig] = Right(
// MyConfig(
// StructField("a", StringType, false, {"k":"v"}),
// StructType(StructField("b", StringType, true, {})),
// ArrayType(StringType, true)
// )
// )
You can also read Spark schemas directly as StructType
instead of narrowing DataType
yourself.
Do note that the outer unlike DataType
, the list of fields cannot be wrapped by an outer STRUCT<...>
.
case class Config(schema: StructType)
val configRes = ConfigSource.string(
"""
|# "struct<a:int,b:string,c:struct<c1:int,c2:double>>" will not work here
|schema = "a int, b string, c struct<c1:int,c2:double>"
|""".stripMargin).load[Config]
// configRes: ConfigReader.Result[Config] = Right(
// Config(
// StructType(
// StructField("a", IntegerType, true, {}),
// StructField("b", StringType, true, {}),
// StructField(
// "c",
// StructType(
// StructField("c1", IntegerType, true, {}),
// StructField("c2", DoubleType, true, {})
// ),
// true,
// {}
// )
// )
// )
// )
val stringSchemaRes2 = configRes.map(ConfigWriter[Config].to(_).render(renderOpt))
// stringSchemaRes2: Either[error.ConfigReaderFailures, String] = Right(
// """{
// "schema" : "a INT,b STRING,c STRUCT<c1: INT, c2: DOUBLE>"
// }
// """
// )