forked from rezacsedu/BERT_with_keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
409 lines (358 loc) · 16.1 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# author: Kris Zhang
import os
import numpy as np
import tensorflow as tf
from keras.utils import multi_gpu_model, Sequence
from keras import initializers, losses
from keras.models import Model
from keras.layers import Dense, Dropout, Input
from .modeling import BertConfig, BertModel
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class SingleSeqDataProcessor(object):
"""data converter for single sequence classification data sets."""
@classmethod
def get_train_examples(self, train_data, labels):
if not isinstance(train_data, list):
raise ValueError("`train_data` should be a list.")
if not isinstance(labels, list):
raise ValueError("`label` should be a list.")
if len(train_data) != len(labels):
raise ValueError("`train_data` and `labels` should have the same length.")
examples = []
for i, sequence in enumerate(train_data):
guid = "train-%d" % (i)
text_a = sequence
label = labels[i]
examples.append(
InputExample(guid=guid, text_a=text_a, label=label)
)
return examples
@classmethod
def get_dev_examples(self, dev_data, labels):
if not isinstance(dev_data, list):
raise ValueError("`dev_data` should be a list.")
if not isinstance(labels, list):
raise ValueError("`label` should be a list.")
if len(dev_data) != len(labels):
raise ValueError("`dev_data` and `labels` should have the same length.")
examples = []
for i, sequence in enumerate(dev_data):
guid = "dev-%d" % (i)
text_a = sequence
label = labels[i]
examples.append(
InputExample(guid=guid, text_a=text_a, label=label)
)
return examples
@classmethod
def get_test_examples(self, test_data):
if not isinstance(test_data, list):
raise ValueError("`dev_data` should be a list.")
examples = []
for i, sequence in enumerate(test_data):
guid = "test-%d" % (i)
text_a = sequence
examples.append(
InputExample(guid=guid, text_a=text_a)
)
return examples
class SeqPairDataProcessor(object):
"""data converter for single sequence classification data sets."""
@classmethod
def get_train_examples(self, train_data_a, train_data_b, labels):
for data in [train_data_a, train_data_b]:
if not isinstance(data, list):
raise ValueError("`%s` should be a list." % (data))
if not isinstance(labels, list):
raise ValueError("`label` should be a list.")
if len(train_data_a) != len(train_data_b) != len(labels):
raise ValueError("`train_data_a`, `train_data_b` and `labels` should have the same length.")
examples = []
for i, sequence in enumerate(train_data_a):
guid = "train-%d" % (i)
text_a = sequence
text_b = train_data_b[i]
label = labels[i]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)
)
return examples
@classmethod
def get_dev_examples(self, dev_data_a, dev_data_b, labels):
for data in [dev_data_a, dev_data_b]:
if not isinstance(data, list):
raise ValueError("`%s` should be a list." % (data))
if not isinstance(labels, list):
raise ValueError("`label` should be a list.")
if len(dev_data_a) != len(dev_data_b) != len(labels):
raise ValueError("`dev_data_a`, `dev_data_b` and `labels` should have the same length.")
examples = []
for i, sequence in enumerate(dev_data_a):
guid = "dev-%d" % (i)
text_a = sequence
text_b = dev_data_b[i]
label = labels[i]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)
)
return examples
@classmethod
def get_test_examples(self, test_data_a, test_data_b):
for data in [test_data_a, test_data_b]:
if not isinstance(data, list):
raise ValueError("`%s` should be a list." % (data))
examples = []
for i, sequence in enumerate(test_data_a):
guid = "test-%d" % (i)
text_a = sequence
text_b = test_data_b[i]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b)
)
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
print("*** Example ***")
print("guid: %s" % (example.guid))
print("tokens: %s" % " ".join(tokens))
print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
print("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
features.append(feature)
return features
def save_features(features, save_dir=None, input_ids_file='input_ids.npy',
input_mask_file='input_mask.npy', segment_ids_file='segment_ids.npy',
label_ids_file='label_ids.npy'):
input_ids = []
input_mask = []
segment_ids = []
label_ids = []
for feature in features:
input_ids.append(feature.input_ids)
input_mask.append(feature.input_mask)
segment_ids.append(feature.segment_ids)
label_ids.append(feature.label_id)
if save_dir is not None:
np.save(os.path.join(save_dir, input_ids_file), input_ids)
np.save(os.path.join(save_dir, input_mask_file), input_mask)
np.save(os.path.join(save_dir, segment_ids_file), segment_ids)
np.save(os.path.join(save_dir, label_ids_file), label_ids)
else:
features_array_dict = dict(input_ids = np.asarray(input_ids),
input_mask = np.asarray(input_mask),
segment_ids = np.asarray(segment_ids),
label_ids = np.asarray(label_ids))
return features_array_dict
class TextSequence(Sequence):
"""generator to fit a sequence of text"""
def __init__(self, x, y, batch_size):
if isinstance(x, list):
if len(x) == 1:
x = x[0]
self.x = x
self.y = y
self.batch_size = batch_size
def __len__(self):
if isinstance(self.x, list):
return int(np.ceil(len(self.x[0]) / float(self.batch_size)))
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
if isinstance(self.x, list):
batch_x = []
for input_x in self.x:
batch_x.append(input_x[idx * self.batch_size : (idx+1) * self.batch_size])
else:
batch_x = self.x[idx * self.batch_size : (idx+1) * self.batch_size]
batch_y = self.y[idx * self.batch_size : (idx+1) * self.batch_size]
return (batch_x, batch_y)
class Text_Classifier(object):
def __init__(self, bert_config, pretrain_model_path, batch_size, seq_length, optimizer, num_classes, metrics=None,
use_token_type=True, mask=True, max_predictions_per_seq=20, multi_gpu=None, loss=None):
if not isinstance(bert_config, BertConfig):
raise ValueError("`bert_config` must be a instance of `BertConfig`")
if multi_gpu:
if not tf.test.is_gpu_available:
raise ValueError("GPU is not available.")
self.config = bert_config
self.batch_size = batch_size
self.seq_length = seq_length
self.use_token_type = use_token_type
self.max_predictions_per_seq = max_predictions_per_seq
self.mask = mask
self.num_classes = num_classes
self.loss = loss or losses.categorical_crossentropy
if multi_gpu:
with tf.device('/cpu:0'):
model = self._build_model(pretrain_model_path)
model.compile(optimizer=optimizer, loss=self.loss, metrics=metrics)
parallel_model = multi_gpu_model(model=model, gpus=multi_gpu)
parallel_model.compile(optimizer=optimizer, loss=self.loss, metrics=metrics)
else:
model = self._build_model(pretrain_model_path)
model.compile(optimizer=optimizer, loss=self.loss, metrics=metrics)
self.estimator = model
if multi_gpu:
self.estimator = parallel_model
def fit_generator(self, generator, epochs, shuffle=True, callbacks=None, validation_data=None,
class_weight=None, workers=1, use_multiprocessing=False, initial_epoch=0):
return self.estimator.fit_generator(
generator=generator,
epochs=epochs,
callbacks=callbacks,
validation_data=validation_data,
class_weight=class_weight,
workers=workers,
use_multiprocessing=use_multiprocessing,
shuffle=shuffle,
initial_epoch=initial_epoch
)
def fit(self, x, y, epochs, shuffle=True, callbacks=None, validation_split=0., validation_data=None,
class_weight=None, sample_weight=None, **kwargs):
return self.estimator.fit(x=x,
y=y,
batch_size=self.batch_size,
epochs=epochs,
shuffle=shuffle,
callbacks=callbacks,
validation_split=validation_split,
validation_data=validation_data,
class_weight=class_weight,
sample_weight=sample_weight,
**kwargs)
def predict(self, x,
batch_size=None,
verbose=0,
steps=None):
result = self.estimator.predict(x=x, batch_size=batch_size, verbose=verbose, steps=steps)
return result
def _build_model(self, pretrain_model):
input_ids = Input(shape=(self.seq_length,))
input_mask = Input(shape=(self.seq_length,))
inputs = [input_ids, input_mask]
if self.use_token_type:
input_token_type_ids = Input(shape=(self.seq_length,))
inputs.append(input_token_type_ids)
self.bert = BertModel(self.config,
batch_size=self.batch_size,
seq_length=self.seq_length,
max_predictions_per_seq=self.max_predictions_per_seq,
use_token_type=self.use_token_type,
mask=self.mask)
self.bert_encoder = self.bert.get_bert_encoder()
self.bert_encoder.load_weights(pretrain_model)
pooled_output = self.bert_encoder(inputs)
pooled_output = Dropout(self.config.hidden_dropout_prob)(pooled_output)
pred = Dense(units=self.num_classes,
activation='softmax',
kernel_initializer=initializers.truncated_normal(stddev=self.config.initializer_range)
)(pooled_output)
model = Model(inputs=inputs, outputs=pred)
return model