-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1024_generate.py
79 lines (66 loc) · 3.1 KB
/
1024_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
'''
Generate images using pretrained network pickle.
'''
import os
import numpy as np
import PIL.Image
from tqdm import trange
import argparse
import dnnlib
import torch
import loader
import misc
from misc import crop_max_rectangle as crop
# Generate images using pretrained network pickle.
def run(model, gpus, output_dir, images_num, truncation_psi, ratio):
# Set GPUs
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
device = torch.device("cuda")
# Load pre-trained network
print("Loading networks...")
G = loader.load_network(model)["Gs"].to(device)
# Make output directory
print("Generate and save images...")
os.makedirs(output_dir, exist_ok = True)
for i in trange(images_num):
# Sample latent vector
z = torch.randn([1, *G.input_shape[1:]], device = device)
# # Generate an image
imgs = G(z, truncation_psi = truncation_psi)[0].cpu().numpy()
# Output images name pattern
pattern = "{}/sample_{{:06d}}.png".format(output_dir)
# Save the image
img = crop(misc.to_pil(imgs[0]), ratio).save(pattern.format(i))
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(description = "Generate images with the GANformer")
parser.add_argument("--model", help = "Filename for a snapshot to resume", type = str)
parser.add_argument("--gpus", help = "Comma-separated list of GPUs to be used (default: %(default)s)", default = "0", type = str)
parser.add_argument("--output-dir", help = "Root directory for experiments (default: %(default)s)", default = "images", metavar = "DIR")
parser.add_argument("--images-num", help = "Number of images to generate (default: %(default)s)", default = 32, type = int)
parser.add_argument("--truncation-psi", help = "Truncation Psi to be used in producing sample images (default: %(default)s)", default = 0.7, type = float)
parser.add_argument("--ratio", help = "Crop ratio for output images (default: %(default)s)", default = 1.0, type = float)
# Pretrained models' ratios: CLEVR (0.75), Bedrooms (188/256), Cityscapes (0.5), FFHQ (1.0)
args, _ = parser.parse_known_args()
run(**vars(args))
if __name__ == "__main__":
# main()
ro = '/home/na/1_Face_morphing/1_code/2_morphing/5_gansformer-main_V2_256/pytorch_version/'
##### model pretrained in 256*256 size ######
# model = ro + 'models/bedrooms-snapshot.pkl'
# model = ro + 'models/ffhq-snapshot.pkl'
model = ro + 'models/ffhq-snapshot-1024.pkl'
# model = ro + 'models/clevr-snapshot.pkl'
# model = ro + 'models/cityscapes-snapshot.pkl'
gpus = '2,3'
output_dir = ro + 'images/face_1024/'
if os.path.exists(output_dir) is False:
os.makedirs(output_dir)
images_num = 100
truncation_psi = 0.7
batch_size = 8
# Pretrained models' ratios:
# CLEVR (0.75), Bedrooms (188/256), Cityscapes (0.5), FFHQ (1.0)
ratio = 1.0
####### generate images ##################
run(model, gpus, output_dir, images_num, truncation_psi, ratio)