-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangleMinimumPathSum.cpp
54 lines (41 loc) · 1.22 KB
/
triangleMinimumPathSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Given a triangle array, return the minimum path sum from top to bottom.
For each step, you may move to an adjacent number of the row below. More
formally, if you are on index i on the current row, you may move to either index
i or index i + 1 on the next row.
Example 1:
Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
Output: 11
Explanation: The triangle looks like:
2
3 4
6 5 7
4 1 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined
above). Example 2:
Input: triangle = [[-10]]
Output: -10
*/
class Solution {
public:
int minimumTotal(vector<vector<int>> &triangle) {
int n = triangle.size();
int ans = INT_MAX;
vector<vector<int>> dp(n, vector<int>(n, INT_MAX));
dp[0][0] = triangle[0][0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < triangle[i].size(); j++) {
if (j == 0) {
dp[i][j] = triangle[i][j] + dp[i - 1][j];
} else {
dp[i][j] =
triangle[i][j] + min(dp[i - 1][j], dp[i - 1][j - 1]);
}
}
}
for (int t : dp[n - 1]) {
ans = min(ans, t);
}
return ans;
}
};