Skip to content

Latest commit

 

History

History
188 lines (130 loc) · 4.51 KB

quickstart.rst

File metadata and controls

188 lines (130 loc) · 4.51 KB

快速上手

快速安装

安装LTP是非常简单的,使用Pip安装只需要:

pip install ltp

分词

使用LTP分词非常简单,下面是一个简短的例子:

from ltp import LTP

ltp = LTP()

segment, _ = ltp.seg(["他叫汤姆去拿外衣。"])
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]

词性标注

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
pos = ltp.pos(hidden)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [['r', 'v', 'nh', 'v', 'v', 'n', 'wp']]

命名实体识别

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
ner = ltp.ner(hidden)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [[('Nh', 2, 2)]]

tag, start, end = ner[0][0]
print(tag,":", "".join(seg[0][start:end + 1]))]
# Nh : 汤姆

语义角色标注

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
srl = ltp.srl(hidden)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [
#     [
#         [],                                                # 他
#         [('ARG0', 0, 0), ('ARG1', 2, 2), ('ARG2', 3, 5)],  # 叫 -> [ARG0: 他, ARG1: 汤姆, ARG2: 拿外衣]
#         [],                                                # 汤姆
#         [],                                                # 去
#         [('ARG0', 2, 2), ('ARG1', 5, 5)],                  # 拿 -> [ARG0: 汤姆, ARG1: 外衣]
#         [],                                                # 外衣
#         []                                                 # 。
#     ]
# ]
srl = ltp.srl(hidden, keep_empty=False)
# [
#     [
#         (1, [('ARG0', 0, 0), ('ARG1', 2, 2), ('ARG2', 3, 5)]), # 叫 -> [ARG0: 他, ARG1: 汤姆, ARG2: 拿外衣]
#         (4, [('ARG0', 2, 2), ('ARG1', 5, 5)])                  # 拿 -> [ARG0: 汤姆, ARG1: 外衣]
#     ]
# ]

依存句法分析

需要注意的是,在依存句法当中,虚节点ROOT占据了0位置,因此节点的下标从1开始。

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
dep = ltp.dep(hidden)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [
#     [
#         (1, 2, 'SBV'),
#         (2, 0, 'HED'),    # 叫 --|HED|--> ROOT
#         (3, 2, 'DBL'),
#         (4, 2, 'VOB'),
#         (5, 4, 'COO'),
#         (6, 5, 'VOB'),
#         (7, 2, 'WP')
#     ]
# ]

语义依存分析(树)

与依存句法类似的,这里的下标也是从1开始。

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
sdp = ltp.sdp(hidden, graph=False)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [
#     [
#         (1, 2, 'Agt'),
#         (2, 0, 'Root'),   # 叫 --|Root|--> ROOT
#         (3, 2, 'Datv'),
#         (4, 2, 'eEfft'),
#         (5, 4, 'eEfft'),
#         (6, 5, 'Pat'),
#         (7, 2, 'mPunc')
#     ]
# ]

语义依存分析(图)

与依存句法类似的,这里的下标也是从1开始。

from ltp import LTP

ltp = LTP()

seg, hidden = ltp.seg(["他叫汤姆去拿外衣。"])
sdp = ltp.sdp(hidden, graph=True)
# [['他', '叫', '汤姆', '去', '拿', '外衣', '。']]
# [
#     [
#         (1, 2, 'Agt'),
#         (2, 0, 'Root'),   # 叫 --|Root|--> ROOT
#         (3, 2, 'Datv'),
#         (3, 4, 'Agt'),
#         (3, 5, 'Agt'),
#         (4, 2, 'eEfft'),
#         (5, 4, 'eEfft'),
#         (6, 5, 'Pat'),
#         (7, 2, 'mPunc')
#     ]
# ]

LTP Server

LTP Server 是对 LTP 的一个简单包装,依赖于 tornado,使用方式如下:

pip install ltp, tornado
python utils/server.py serve