forked from apache/airflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_example_bash_operator.py
51 lines (43 loc) · 1.75 KB
/
test_example_bash_operator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import datetime
from airflow.models.dag import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.empty import EmptyOperator
dag = DAG(
dag_id="test_example_bash_operator",
default_args={"owner": "airflow", "retries": 3, "start_date": datetime.datetime(2022, 1, 1)},
schedule="0 0 * * *",
dagrun_timeout=datetime.timedelta(minutes=60),
)
cmd = "ls -l"
run_this_last = EmptyOperator(task_id="run_this_last", dag=dag)
run_this = BashOperator(task_id="run_after_loop", bash_command="echo 1", dag=dag)
run_this.set_downstream(run_this_last)
for i in range(3):
task = BashOperator(
task_id=f"runme_{i}", bash_command='echo "{{ task_instance_key_str }}" && sleep 1', dag=dag
)
task.set_downstream(run_this)
task = BashOperator(
task_id="also_run_this", bash_command='echo "run_id={{ run_id }} | dag_run={{ dag_run }}"', dag=dag
)
task.set_downstream(run_this_last)
if __name__ == "__main__":
dag.cli()