forked from CYHSM/DeepInsight
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse.py
316 lines (284 loc) · 12.7 KB
/
analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
DeepInsight Toolbox
© Markus Frey
https://github.com/CYHSM/DeepInsight
Licensed under MIT License
"""
from . import util
import h5py
import numpy as np
import pandas as pd
from scipy.stats import spearmanr
from tensorflow.compat.v1.keras import backend as K
import os
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
def get_model_loss(fp_hdf_out, stepsize=1, shuffles=None, axis=0, verbose=1):
"""
Loops across cross validated models and calculates loss and predictions for full experiment length
Parameters
----------
fp_hdf_out : str
File path to HDF5 file
stepsize : int, optional
Determines how many samples will be evaluated. 1 -> N samples evaluated,
2 -> N/2 samples evaluated, etc..., by default 1
shuffles : dict, optional
If wavelets should be shuffled, important for calculating influence scores, by default None
Returns
-------
losses : (N,1) array_like
Loss between predicted and ground truth observation
predictions : dict
Dictionary with predictions for each behaviour, each item in dict has size (N, Z) with Z the dimensions of the sample (e.g. Z_position=2, Z_speed=1, ...)
indices : (N,1) array_like
Indices which were evaluated, important when taking stepsize unequal to 1
"""
dirname = os.path.dirname(fp_hdf_out)
filename = os.path.basename(fp_hdf_out)[0:-3]
cv_results = []
(_, _, _, opts) = util.hdf5.load_model_with_opts(
dirname + '/models/' + filename + '_model_{}.h5'.format(0))
loss_names = opts['loss_names']
time_shift = opts['model_timesteps']
if verbose > 0:
progress_bar = tf.keras.utils.Progbar(
opts['num_cvs'], width=30, verbose=1, interval=0.05, unit_name='run')
for k in range(0, opts['num_cvs']):
K.clear_session()
# Find folders
model_path = dirname + '/models/' + filename + '_model_{}.h5'.format(k)
# Load model and generators
(model, training_generator, testing_generator,
opts) = util.hdf5.load_model_with_opts(model_path)
# -----------------------------------------------------------------------------------------------
if shuffles is not None:
testing_generator = shuffle_wavelets(
training_generator, testing_generator, shuffles)
losses, predictions, indices = calculate_losses_from_generator(
testing_generator, model, verbose=0, stepsize=stepsize)
# -----------------------------------------------------------------------------------------------
cv_results.append((losses, predictions, indices))
if verbose > 0:
progress_bar.add(1)
cv_results = np.array(cv_results)
# Reshape cv_results
losses = np.concatenate(cv_results[:, 0], axis=0)
predictions = {k: [] for k in loss_names}
for out in cv_results[:, 1]:
for p, name in zip(out, loss_names):
predictions[name].append(p)
for key, item in predictions.items():
if stepsize > 1:
tmp_output = np.concatenate(predictions[key], axis=0)[:, -1, :]
else:
tmp_output = np.concatenate(predictions[key], axis=0)[:, -1, :]
tmp_output = np.array([np.pad(l, [time_shift, 0], mode='constant', constant_values=[l[0], 0])
for l in tmp_output.transpose()]).transpose()
predictions[key] = tmp_output
indices = np.concatenate(cv_results[:, 2], axis=0)
# We only take the last timestep for decoding, so decoder does not see any part of the future
indices = indices + time_shift
if stepsize > 1:
losses = losses[:, :, -1]
else:
losses = losses[:, :, -1]
losses = np.array([np.pad(l, [time_shift, 0], mode='constant', constant_values=[l[0], 0])
for l in losses.transpose()]).transpose()
indices = np.arange(0, losses.shape[0])
# Also save to HDF5
hdf5_file = h5py.File(fp_hdf_out, mode='a')
for key, item in predictions.items():
util.hdf5.create_or_update(hdf5_file, dataset_name="analysis/predictions/{}_axis{}_stepsize{}".format(key, axis, stepsize),
dataset_shape=item.shape, dataset_type=np.float32, dataset_value=item)
util.hdf5.create_or_update(hdf5_file, dataset_name="analysis/losses_axis{}_stepsize{}".format(axis, stepsize),
dataset_shape=losses.shape, dataset_type=np.float32, dataset_value=losses)
util.hdf5.create_or_update(hdf5_file, dataset_name="analysis/indices_axis{}_stepsize{}".format(axis, stepsize),
dataset_shape=indices.shape, dataset_type=np.int64, dataset_value=indices)
hdf5_file.close()
# Report model performance
if verbose > 0:
df_stats = calculate_model_stats(fp_hdf_out, losses, predictions, indices)
print(df_stats)
return losses, predictions, indices
def get_shuffled_model_loss(fp_hdf_out, stepsize=1, axis=0, verbose=1):
"""
Shuffles the wavelets and recalculates error
Parameters
----------
fp_hdf_out : str
File path to HDF5 file
stepsize : int, optional
Determines how many samples will be evaluated. 1 -> N samples evaluated,
2 -> N/2 samples evaluated, etc..., by default 1
axis : int, optional
Which axis to shuffle
Returns
-------
shuffled_losses : (N,1) array_like
Loss between predicted and ground truth observation for shuffled wavelets on specified axis
"""
if axis == 0:
raise ValueError(
'Shuffling across time dimension (axis=0) not supported yet.')
hdf5_file = h5py.File(fp_hdf_out, mode='r')
tmp_wavelets_shape = hdf5_file['inputs/wavelets'].shape
hdf5_file.close()
shuffled_losses = []
if verbose > 0:
progress_bar = tf.keras.utils.Progbar(
tmp_wavelets_shape[axis], width=30, verbose=1, interval=0.05, unit_name='run')
for s in range(0, tmp_wavelets_shape[axis]):
if axis == 1:
losses, _, _ = get_model_loss(
fp_hdf_out, stepsize=stepsize, shuffles={'f': s}, axis=axis, verbose=0)
elif axis == 2:
losses, _, _ = get_model_loss(
fp_hdf_out, stepsize=stepsize, shuffles={'c': s}, axis=axis, verbose=0)
shuffled_losses.append(losses)
if verbose > 0:
progress_bar.add(1)
shuffled_losses = np.array(shuffled_losses)
# Also save to HDF5
hdf5_file = h5py.File(fp_hdf_out, mode='a')
util.hdf5.create_or_update(hdf5_file, dataset_name="analysis/influence/shuffled_losses_axis{}_stepsize{}".format(axis, stepsize),
dataset_shape=shuffled_losses.shape, dataset_type=np.float32, dataset_value=shuffled_losses)
hdf5_file.close()
return shuffled_losses
def calculate_losses_from_generator(tg, model, num_steps=None, stepsize=1, verbose=0):
"""
Keras evaluate_generator only returns a scalar loss (mean) while predict_generator only returns the predictions but not the real labels
TODO Make it batch size independent
Parameters
----------
tg : object
Data generator
model : object
Keras model
num_steps : int, optional
How many steps should be evaluated, by default None (runs through full experiment)
stepsize : int, optional
Determines how many samples will be evaluated. 1 -> N samples evaluated,
2 -> N/2 samples evaluated, etc..., by default 1
verbose : int, optional
Verbosity level
Returns
-------
losses : (N,1) array_like
Loss between predicted and ground truth observation
predictions : dict
Dictionary with predictions for each behaviour, each item in dict has size (N, Z) with Z the dimensions of the sample (e.g. Z_position=2, Z_speed=1, ...)
indices : (N,1) array_like
Indices which were evaluated, important when taking stepsize unequal to 1
"""
# X.) Parse inputs
if num_steps is None:
num_steps = len(tg)
# 1.) Make a copy and adjust attributes
tmp_dict = tg.__dict__.copy()
if tg.batch_size != 1:
tg.batch_size = 1
tg.random_batches = False
tg.shuffle = False
tg.sample_size = tg.model_timesteps * tg.batch_size
# 2.) Get output tensors
sess = K.get_session()
(_, test_out) = tg.__getitem__(0)
real_tensor, calc_tensors = K.placeholder(), []
for output_index in range(0, len(test_out)):
prediction_tensor = model.outputs[output_index]
loss_tensor = model.loss_functions[output_index].fn(
real_tensor, prediction_tensor)
calc_tensors.append((prediction_tensor, loss_tensor))
# 3.) Predict
losses, predictions, indices = [], [], []
for i in range(0, num_steps, stepsize):
(in_tg, out_tg) = tg.__getitem__(i)
indices.append(tg.cv_indices[i])
loss, prediction = [], []
for o in range(0, len(out_tg)):
evaluated = sess.run(calc_tensors[o], feed_dict={
model.input: in_tg, real_tensor: out_tg[o]})
prediction.append(evaluated[0][0, ...])
loss.append(evaluated[1][0, ...]) # Get rid of batch dimensions
predictions.append(prediction)
losses.append(loss)
if verbose > 0 and not i % 50:
print('{} / {}'.format(i, num_steps), end='\r')
if verbose > 0:
print('Performed {} gradient steps'.format(num_steps // stepsize))
losses, predictions, indices = np.array(
losses), swap_listaxes(predictions), np.array(indices)
tg.__dict__.update(tmp_dict)
return losses, predictions, indices
def shuffle_wavelets(training_generator, testing_generator, shuffles):
"""
Shuffle procedure for model interpretation
Parameters
----------
training_generator : object
Data generator for training data
testing_generator : object
Data generator for testing data
shuffles : dict
Indicates which axis to shuffle and which index in selected dimension, e.g. {'f' : 5} shuffles frequency axis 5
Returns
-------
testing_generator : object
Data generator for testing data with shuffled wavelets
"""
rolled_wavelets = training_generator.wavelets.copy()
for key, item in shuffles.items():
if key == 'f':
np.random.shuffle(rolled_wavelets[:, item, :]) # In place
elif key == 'c':
np.random.shuffle(rolled_wavelets[:, :, item]) # In place
elif key == 't':
np.random.shuffle(rolled_wavelets[item, :, :]) # In place
testing_generator.wavelets = rolled_wavelets
return testing_generator
def swap_listaxes(list_in):
list_out = []
for o in range(0, len(list_in[0])):
list_out.append(np.array([out[o] for out in list_in]))
return list_out
def calculate_model_stats(fp_hdf_out, losses, predictions, indices, additional_metrics=[spearmanr]):
"""
Calculates statistics on model predictions
Parameters
----------
fp_hdf_out : str
File path to HDF5 file
losses : (N,1) array_like
Loss between predicted and ground truth observation
predictions : dict
Dictionary with predictions for each behaviour, each item in dict has size (N, Z) with Z the dimensions of the sample (e.g. Z_position=2, Z_speed=1, ...)
indices : (N,1) array_like
Indices which were evaluated, important when taking stepsize unequal to 1
additional_metrics : list, optional
Additional metrics besides Pearson and Model loss to be evaluated, should take arguments (y_true, y_pred) and return scalar or first argument as metric
Returns
-------
df_scores
Dataframe of evaluated scores
"""
hdf5_file = h5py.File(fp_hdf_out, mode='r')
output_scores = []
for idx, (key, y_pred) in enumerate(predictions.items()):
y_true = hdf5_file['outputs/{}'.format(key)][indices, :]
pearson_mean, additional_mean = 0, np.zeros((len(additional_metrics)))
for p in range(y_pred.shape[1]):
pearson_mean += np.corrcoef(y_true[:, p], y_pred[:, p])[0, 1]
for add_idx, am in enumerate(additional_metrics):
am_eval = am(y_true[:, p], y_pred[:, p])
if len(am_eval) > 1:
am_eval = am_eval[0]
additional_mean[add_idx] += am_eval
additional_mean /= y_pred.shape[1]
pearson_mean /= y_pred.shape[1]
loss_mean = np.mean(losses[:, idx])
output_scores.append((pearson_mean, loss_mean, *additional_mean))
additional_columns = [f.__name__.title() for f in additional_metrics]
df_scores = pd.DataFrame(output_scores, index=predictions.keys(), columns=['Pearson', 'Model Loss', *additional_columns])
hdf5_file.close()
return df_scores