forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lit_data.py
51 lines (41 loc) · 1.9 KB
/
test_lit_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import sys
from unittest import mock
from unittest.mock import ANY
import pytest
from litgpt.data import LitData
@pytest.mark.skipif(sys.platform == "win32", reason="Needs to implement platform agnostic path/url joining")
@mock.patch("litgpt.data.lit_data.LitData._dataloader")
def test_input_dir_and_splits(dl_mock, tmp_path):
with pytest.raises(ValueError, match="If provided `split_names` must be a tuple of two strings"):
LitData(data_path=tmp_path, split_names=("train",))
# local dir, no splits
data = LitData(data_path=tmp_path)
data.train_dataloader()
dl_mock.assert_called_with(input_dir=str(tmp_path), train=True)
data.val_dataloader()
dl_mock.assert_called_with(input_dir=str(tmp_path), train=False)
# local dir, splits
data = LitData(data_path=tmp_path, split_names=("train", "val"))
data.train_dataloader()
dl_mock.assert_called_with(input_dir=str(tmp_path / "train"), train=True)
data.val_dataloader()
dl_mock.assert_called_with(input_dir=str(tmp_path / "val"), train=False)
# remote dir, splits
data = LitData(data_path="s3://mydataset/data", split_names=("train", "val"))
data.train_dataloader()
dl_mock.assert_called_with(input_dir=str("s3://mydataset/data/train"), train=True)
data.val_dataloader()
dl_mock.assert_called_with(input_dir=str("s3://mydataset/data/val"), train=False)
@pytest.mark.skipif(sys.platform == "win32", reason="Needs to implement platform agnostic path/url joining")
@mock.patch("litdata.streaming.StreamingDataset")
def test_dataset_args(streaming_dataset_mock, tmp_path):
data = LitData(data_path=tmp_path, seed=1000)
data.train_dataloader()
streaming_dataset_mock.assert_called_with(
input_dir=str(tmp_path),
item_loader=ANY,
shuffle=True,
drop_last=True,
seed=1000,
)