forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_generate_tp.py
137 lines (116 loc) · 5.35 KB
/
test_generate_tp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import subprocess
import sys
from dataclasses import asdict, replace
from pathlib import Path
from unittest.mock import Mock
import pytest
import torch
import yaml
from litgpt import GPT, Config
from litgpt.generate.tp import tensor_parallel, tensor_parallel_linear
from litgpt.scripts.download import download_from_hub
from tests.conftest import RunIf
from tests.test_generate_sequentially import find_forward_hooks
def test_tensor_parallel_linear():
fabric = Mock()
fabric.world_size = 4
fabric.global_rank = 2
def get_linear(bias=True):
linear = torch.nn.Linear(8, 8, bias=bias)
linear.weight.data = torch.arange(64, dtype=torch.float32).reshape(8, 8)
if bias:
linear.bias.data = torch.arange(8, dtype=torch.float32)
return linear
linear = get_linear()
tensor_parallel_linear(fabric, linear, "colwise")
expected = torch.arange(32, 48, dtype=torch.float32).reshape(2, 8)
torch.testing.assert_close(linear.weight, expected)
expected = torch.arange(4, 6, dtype=torch.float32)
torch.testing.assert_close(linear.bias, expected)
linear = get_linear(bias=False)
tensor_parallel_linear(fabric, linear, "rowwise")
expected = torch.arange(4, 62, 8, dtype=torch.float32).reshape(8, 1)
expected = torch.cat([expected, expected + 1], dim=1)
torch.testing.assert_close(linear.weight, expected)
assert linear.bias is None
@pytest.mark.parametrize(
("name", "expected"),
[
(
"Llama-2-70b-hf",
{
"transformer.h.0.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.0.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
},
),
(
"falcon-180B",
{
"transformer.h.0.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.0.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.mlp": [("forward_hook", "all_reduce_output", (8,), {})],
},
),
(
"Mixtral-8x7B-v0.1",
{
"transformer.h.0.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.0.mlp.experts.0": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.0.mlp.experts.1": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.mlp.experts.0": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.1.mlp.experts.1": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.attn": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.mlp.experts.0": [("forward_hook", "all_reduce_output", (8,), {})],
"transformer.h.2.mlp.experts.1": [("forward_hook", "all_reduce_output", (8,), {})],
},
),
],
)
def test_tensor_parallel_llama(name, expected):
fabric = Mock()
fabric.world_size = 8
fabric.global_rank = 1
with torch.device("meta"):
model = GPT.from_name(name, n_layer=3, n_expert=2)
config = replace(model.config) # make a copy
model = tensor_parallel(fabric, model)
hooks = find_forward_hooks(model)
assert hooks == expected
assert model.config.n_embd * 8 == config.n_embd
assert model.config.n_head * 8 == config.n_head
assert model.config.n_query_groups * 8 == config.n_query_groups
root = Path(__file__).parent.parent.resolve()
@RunIf(min_cuda_gpus=2)
def test_tp(tmp_path):
# download the tokenizer
download_from_hub(repo_id="EleutherAI/pythia-14m", tokenizer_only=True, checkpoint_dir=tmp_path)
checkpoint_dir = tmp_path / "EleutherAI/pythia-14m"
# save the config
config = Config.from_name("pythia-14m")
(checkpoint_dir / "model_config.yaml").write_text(yaml.dump(asdict(config)))
# create a state dict to load from
torch.save(GPT(config).state_dict(), checkpoint_dir / "lit_model.pth")
args = [
str(checkpoint_dir),
"--num_samples=1",
"--max_new_tokens=10",
"--precision=16-true",
"--temperature=0.0",
]
env = {"CUDA_VISIBLE_DEVICES": "0,1"}
tp_stdout = subprocess.check_output([sys.executable, "-m", "litgpt", "generate_tp", *args], env=env, cwd=root).decode()
# there is some unaccounted randomness so cannot compare the output with that of `generate/base.py`
assert "What food do llamas eat?" in tp_stdout
def test_cli():
args = ["litgpt", "generate_tp", "-h"]
output = subprocess.check_output(args)
output = str(output.decode())
assert "Generation script that uses tensor parallelism" in output