-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathunimernet_app.py
310 lines (258 loc) · 10.6 KB
/
unimernet_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import io
import os
import sys
import argparse
import numpy as np
import torch
import hashlib
import pypdfium2
import pandas as pd
import streamlit as st
from PIL import Image
from streamlit_drawable_canvas import st_canvas
import unimernet.tasks as tasks
from unimernet.common.config import Config
from unimernet.processors import load_processor
MAX_WIDTH = 872
MAX_HEIGHT = 1024
class ImageProcessor:
"""ImageProcessor class handles the loading of the model and processing of images."""
def __init__(self, cfg_path):
self.cfg_path = cfg_path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model, self.vis_processor = self.load_model_and_processor()
def load_model_and_processor(self):
# Load the model and visual processor from the configuration
args = argparse.Namespace(cfg_path=self.cfg_path, options=None)
cfg = Config(args)
task = tasks.setup_task(cfg)
model = task.build_model(cfg).to(self.device)
vis_processor = load_processor(
"formula_image_eval",
cfg.config.datasets.formula_rec_eval.vis_processor.eval,
)
return model, vis_processor
def process_single_image(self, pil_image):
# Process an image and return the LaTeX string
image = self.vis_processor(pil_image).unsqueeze(0).to(self.device)
output = self.model.generate({"image": image})
pred = output["pred_str"][0]
return pred
@st.cache_data(show_spinner=False)
def read_markdown(path):
with open(path, "r", encoding="utf-8") as f:
data = f.read()
return data
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=300):
# Extract an image from a PDF page
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def get_uploaded_image(in_file):
# Load an uploaded image file
return Image.open(in_file).convert("RGB")
def resize_image(pil_image):
# Resize an image to fit within the MAX_WIDTH and MAX_HEIGHT
if pil_image is None:
return
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
def display_image_cropped(pil_image, bbox):
# Display a cropped portion of an image
cropped_image = pil_image.crop(bbox)
st.image(cropped_image, use_column_width=True)
@st.cache_data()
def page_count_fn(pdf_file):
# Return the number of pages in a PDF
doc = open_pdf(pdf_file)
return len(doc)
def get_canvas_hash(pil_image):
return hashlib.md5(pil_image.tobytes()).hexdigest()
@st.cache_data()
def get_image_size(pil_image):
if pil_image is None:
return MAX_HEIGHT, MAX_WIDTH
height, width = pil_image.height, pil_image.width
return height, width
@st.cache_data(hash_funcs={ImageProcessor: id})
def infer_image(processor, pil_image, bbox):
# Perform inference on a cropped image
input_img = pil_image.crop(bbox)
pred = processor.process_single_image(input_img)
return pred
@st.cache_resource()
def load_image_processor(cfg_path):
processor = ImageProcessor(cfg_path)
return processor
def run_mode1():
"""Direct Recognition mode: recognize formulas directly from an image
"""
col1, col2 = st.columns([0.5, 0.5])
in_file = st.sidebar.file_uploader(
"Input Image:", type=["png", "jpg", "jpeg", "gif", "webp"]
)
if in_file is None:
st.stop()
filetype = in_file.type
pil_image = get_uploaded_image(in_file)
resize_image(pil_image)
with col1:
st.image(pil_image, use_column_width=True)
st.markdown(
"<h4 style='text-align: center; color: black;'>[Input: Image] </h4>",
unsafe_allow_html=True,
)
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
with col2:
inferences = [infer_image(processor, pil_image, bbox) for bbox in bbox_list]
for idx, (bbox, inference) in enumerate(
zip(reversed(bbox_list), reversed(inferences))
):
st.latex(inference)
st.markdown(
"<h4 style='text-align: center; color: black;'>[Prediction: Rendered Image]</h4>",
unsafe_allow_html=True,
)
st.divider()
st.code(inference)
st.markdown(
"<h4 style='text-align: center; color: black;'>[Prediction: LaTeX Code]</h4>",
unsafe_allow_html=True,
)
def run_mode2():
"""Manual Selection mode: allows users to select formulas in an image or PDF for recognition.
"""
col1, col2 = st.columns([0.7, 0.3])
in_file = st.sidebar.file_uploader(
"PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]
)
if in_file is None:
st.stop()
# Determine if the uploaded file is a PDF or an image
whole_image = False
if in_file.type == "application/pdf":
page_count = page_count_fn(in_file)
page_number = st.sidebar.number_input(
"Page number:",
min_value=1,
value=1,
max_value=page_count,
)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = get_uploaded_image(in_file)
whole_image = st.sidebar.button("Formula Recognition")
resize_image(pil_image)
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
with col1:
# Create a canvas component where users can draw rectangles to select formulas
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity
stroke_width=1,
stroke_color="#FFAA00",
background_color="#FFF",
background_image=pil_image,
update_streamlit=True,
height=get_image_size(pil_image)[0],
width=get_image_size(pil_image)[1],
drawing_mode="rect",
point_display_radius=0,
key=canvas_hash,
)
# Process the drawn rectangles or the whole image if 'whole_image' is True
if canvas_result.json_data is not None or whole_image:
objects = pd.json_normalize(canvas_result.json_data["objects"])
bbox_list = []
if objects.shape[0] > 0:
boxes = objects[objects["type"] == "rect"][
["left", "top", "width", "height"]
]
boxes["right"] = boxes["left"] + boxes["width"]
boxes["bottom"] = boxes["top"] + boxes["height"]
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
if whole_image:
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
if bbox_list:
with col2:
# Perform inference on each selected area and display results
inferences = [infer_image(processor, pil_image, bbox) for bbox in bbox_list]
for idx, (bbox, inference) in enumerate(zip(reversed(bbox_list), reversed(inferences))):
st.markdown(f"### Result {len(inferences) - idx}")
st.markdown(
"<h6 style='text-align: left; color: black;'>[Input: Image] </h6>",
unsafe_allow_html=True,
)
display_image_cropped(pil_image, bbox)
st.markdown(
"<h6 style='text-align: left; color: black;'>[Prediction: Rendered Image] </h6>",
unsafe_allow_html=True,
)
st.latex(inference)
st.markdown(
"<h6 style='text-align: left; color: black;'>[Prediction: LaTeX Code] </h6>",
unsafe_allow_html=True,
)
st.code(inference)
st.divider()
with col2:
tips = """
### Usage tips
- Draw a box around the equation to get the prediction."""
st.markdown(tips)
def run_mode3():
st.markdown("Coming Soon!")
if __name__ == "__main__":
st.set_page_config(layout="wide")
html_code = """
<div style='text-align: center; color: black;'>
<h2>UniMERNet Online Demo</h2>
<h5 style='text-align: left; padding-left: 20px; list-style-position: inside;'
>This App is based on <a href="https://github.com/opendatalab/UniMERNet">UniMERNet</a>. There are three optional modes for mathematical expression recognition:</h5>
<ul style='text-align: left; padding-left: 20px; list-style-position: inside;'>
<li><span style="font-weight: bold;">① Direct Recognition:</span> Input an image containing formulas and output the recognition results.</li>
<li><span style="font-weight: bold;">② Manual Selection:</span> Input a document or webpage screenshot, detect all formulas, then recognize each one.</li>
<li><span style="font-weight: bold;">③ Auto Detection:</span> Input an image or document, and the model automatically detects and recognizes all formulas.</li>
</ul>
</div>
"""
readme_text = st.markdown(html_code, unsafe_allow_html=True)
root_path = os.path.abspath(os.getcwd())
config_path = os.path.join(root_path, "configs/demo.yaml")
processor = load_image_processor(config_path)
app_mode = st.sidebar.selectbox(
"Switch Mode:", ["Direct Recognition", "Manual Selection", "Auto Detection"]
)
# Direct Recognition: Input an image containing formulas and output the recognition results.
if app_mode == "Direct Recognition":
st.markdown("---")
st.markdown(
"<h3 style='text-align: center; color: red;'> Direct Recognition </h3>",
unsafe_allow_html=True,
)
run_mode1()
# Manual Selection: Input a document or webpage screenshot, detect all formulas, then recognize each one.
elif app_mode == "Manual Selection":
st.markdown("---")
st.markdown(
"<h3 style='text-align: center; color: red;'> Manual Selection and Recognition </h3>",
unsafe_allow_html=True,
)
run_mode2()
# Auto Detection: Input an image or document, and the model automatically detects and recognizes all formulas.
elif app_mode == "Auto Detection":
st.markdown("---")
st.markdown(
"<h3 style='text-align: center; color: red;'> Auto Detection and Recognition (Coming Soon) </h3>",
unsafe_allow_html=True,
)
run_mode3()