-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcv32e40s_rvfi_sva.sv
784 lines (653 loc) · 37.9 KB
/
cv32e40s_rvfi_sva.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// Copyright 2021 Silicon Labs, Inc.
//
// This file, and derivatives thereof are licensed under the
// Solderpad License, Version 2.0 (the "License");
// Use of this file means you agree to the terms and conditions
// of the license and are in full compliance with the License.
// You may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.0/
//
// Unless required by applicable law or agreed to in writing, software
// and hardware implementations thereof
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
// See the License for the specific language governing permissions and
// limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// //
// Authors: Oivind Ekelund - [email protected] //
// //
// Description: Assertions for RVFI //
// //
////////////////////////////////////////////////////////////////////////////////
module cv32e40s_rvfi_sva
import uvm_pkg::*;
import cv32e40s_pkg::*;
import cv32e40s_rvfi_pkg::*;
#(
parameter bit CLIC = 0,
parameter bit DEBUG = 1
)
(
input logic clk_i,
input logic rst_ni,
input logic rvfi_valid,
input rvfi_intr_t rvfi_intr,
input rvfi_trap_t rvfi_trap,
input logic [2:0] rvfi_dbg,
input ctrl_fsm_t ctrl_fsm_i,
input logic [31:0] rvfi_csr_dcsr_rdata,
input logic [31:0] rvfi_csr_mcause_rdata,
input logic [31:0] rvfi_pc_rdata,
input logic [24:0] mtvec_addr_i,
input logic [31:0] rvfi_csr_mie_rdata,
input logic [31:0] rvfi_csr_mip_rdata,
input logic irq_ack,
input logic dbg_ack,
input logic ebreak_in_wb_i,
input rvfi_intr_t [4:0] in_trap,
input logic [4:0] [2:0] debug_cause,
input logic if_valid_i,
input logic id_ready_i,
input logic [31:0] pc_if_i,
input logic [31:0] pc_id_i,
input logic [31:0] pc_ex_i,
input logic [31:0] pc_wb_i,
input inst_resp_t prefetch_instr_if_i,
input logic prefetch_compressed_if_i,
input logic [31:0] prefetch_addr_if_i,
input logic prefetch_valid_if_i,
input logic prefetch_ready_if_i,
input rvfi_obi_instr_t obi_instr_if,
input rvfi_obi_instr_t [0:3] obi_instr_fifo_q,
input logic [1:0] obi_instr_rptr_q_inc,
input logic [1:0] obi_instr_rptr_q,
input logic mret_ptr_wb,
input logic [31:0] instr_rdata_wb_past,
input logic pc_mux_exception,
input logic pc_mux_debug,
input logic in_trap_clr,
input logic wb_valid_lastop,
input logic etrigger_in_wb_i,
cv32e40s_if_c_obi.monitor m_c_obi_data_if,
input logic [32*NMEM-1:0] rvfi_mem_addr,
input logic [ 4*NMEM-1:0] rvfi_mem_rmask,
input logic [ 4*NMEM-1:0] rvfi_mem_wmask,
input logic [32*NMEM-1:0] rvfi_mem_rdata,
input logic [32*NMEM-1:0] rvfi_mem_wdata,
input logic [ 1*NMEM-1:0] rvfi_mem_exokay,
input logic [ 1*NMEM-1:0] rvfi_mem_err,
input logic [ 3*NMEM-1:0] rvfi_mem_prot,
input logic [ 6*NMEM-1:0] rvfi_mem_atop,
input logic [ 2*NMEM-1:0] rvfi_mem_memtype,
input logic [ 1*NMEM-1:0] rvfi_mem_dbg
);
rvfi_trap_t rvfi_trap_q; // RVFI trap value of the previous valid rvfi instruction
always_ff @(posedge clk_i, negedge rst_ni) begin
if (rst_ni == 1'b0) begin
rvfi_trap_q <= '0;
end else begin
if (rvfi_valid) begin
rvfi_trap_q <= rvfi_trap;
end
end
end
if (CLIC) begin
a_mret_pointer :
assert property (@(posedge clk_i) disable iff (!rst_ni)
(mret_ptr_wb |-> (instr_rdata_wb_past == 32'h30200073)))
else `uvm_error("rvfi", "mret not in STAGE_WB_PAST when mret pointer arrived in WB")
end
// Check that irq_ack results in RVFI capturing a trap
// Ideally, we should assert that every irq_ack eventually leads to rvfi_intr,
// but since there can be an infinite delay between irq_ack and rvfi_intr (e.g. because of bus stalls), we're settling for asserting
// that irq_ack leads to RVFI capturing a trap (in_trap[IF_STAGE] = 1)
a_irq_ack_rvfi_capture :
assert property (@(posedge clk_i) disable iff (!rst_ni)
(irq_ack |=> in_trap[STAGE_IF].intr))
else `uvm_error("rvfi", "irq_ack not captured by RVFI")
// Every irq_ack shall cause rvfi_intr on next rvfi_valid
property p_every_ack_followed_by_rvfi_intr;
@(posedge clk_i) disable iff (!rst_ni)
irq_ack ##1 rvfi_valid[->1]
|->
rvfi_intr.intr;
endproperty : p_every_ack_followed_by_rvfi_intr
a_every_ack_followed_by_rvfi_intr: assert property (p_every_ack_followed_by_rvfi_intr)
else
`uvm_error("rvfi",
$sformatf("Every irq_ack should be followed by the corresponding rvfi_intr"));
// rvfi_intr.intr shall also have rvfi_intr.exception or rvfi_intr.interrupt set at the same time
property p_rvfi_intr_interrupt_exception;
@(posedge clk_i) disable iff (!rst_ni)
rvfi_intr.intr
|->
(rvfi_intr.interrupt ||
rvfi_intr.exception);
endproperty : p_rvfi_intr_interrupt_exception
a_rvfi_intr_interrupt_exception: assert property (p_rvfi_intr_interrupt_exception)
else
`uvm_error("rvfi",
$sformatf("rvfi_intr.intr set without rvfi_intr.exception or rvfi_intr.interrupt"));
// Sequence used to locate rvfi_valid following rvfi_valid with prereq set
sequence s_goto_next_rvfi_valid(prereq);
(prereq && rvfi_valid) ##1 rvfi_valid[->1];
endsequence
logic no_debug;
// Indicate debug mode, or single stepping
assign no_debug = !(rvfi_csr_dcsr_rdata[2] || ctrl_fsm_i.debug_mode);
// rvfi_trap should always be followed by rvfi_intr (as long as we're not in debug mode)
a_rvfi_trap_intr :
assert property (@(posedge clk_i) disable iff (!rst_ni)
no_debug throughout s_goto_next_rvfi_valid(|rvfi_trap) |->
rvfi_intr.intr)
else `uvm_error("rvfi", "rvfi_trap not followed by rvfi_intr")
// Exception code in rvfi_trap.exception_cause should align with mcause exception cause in the following retired instruction
// This is exempt if we have an NMI, because NMI will result in mcause being updated in between retired instructions.
// Also, in debug mode, mcause is not updated.
a_rvfi_trap_mcause_align:
assert property (@(posedge clk_i) disable iff (!rst_ni)
(no_debug && !ctrl_fsm_i.pending_nmi) throughout s_goto_next_rvfi_valid(|rvfi_trap) |->
rvfi_intr.intr && (rvfi_csr_mcause_rdata[5:0] == $past(rvfi_trap.exception_cause)))
else `uvm_error("rvfi", "rvfi_trap.exception_cause not consistent with mcause[5:0] in following retired instruction")
// Check that the trap is always signalled on the instruction before single step debug entry (unless killed by interrupt)
a_rvfi_single_step_no_trap_no_dbg_entry:
assert property (@(posedge clk_i) disable iff (!rst_ni)
s_goto_next_rvfi_valid(rvfi_trap.debug_cause != DBG_CAUSE_STEP) |-> ((rvfi_dbg != DBG_CAUSE_STEP) || rvfi_intr.intr))
else `uvm_error("rvfi", "Single step debug entry without correct rvfi_trap first")
if (DEBUG) begin
// Helper signal, indicating debug cause
// Special case for debug entry from debug mode caused by EBREAK as it is not captured by debug_cause_i
logic [2:0] debug_cause_int;
assign debug_cause_int = (ctrl_fsm_i.debug_mode && ebreak_in_wb_i) ? 3'h1 : ctrl_fsm_i.debug_cause;
// Check that dbg_ack results in RVFI capturing a debug_cause
// Ideally, we should assert that every dbg_ack eventually leads to rvfi_dbg,
// but since there can be an infinite delay between dbg_ack and rvfi_dbg (e.g. because of bus stalls), we're settling for asserting
// that dbg_ack leads to RVFI capturing the debug cause
a_dbg_ack_rvfi_capture :
assert property (@(posedge clk_i) disable iff (!rst_ni)
(dbg_ack |=> (debug_cause[STAGE_IF] == $past(debug_cause_int))))
else `uvm_error("rvfi", "dbg_ack did not lead to rvfi_dbg != 0")
// Helper signal, indicate that a debug entry was signaled on RVFI
logic rvfi_dbg_ack;
assign rvfi_dbg_ack = |rvfi_dbg && rvfi_valid;
// Helper signal, count outstanding dbg_ack
bit [1:0] dbg_ack_cnt;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
dbg_ack_cnt <= '0;
end
else begin
if (dbg_ack && !rvfi_dbg_ack) begin
dbg_ack_cnt <= dbg_ack_cnt+2'd1;
end
else if (rvfi_dbg_ack && !dbg_ack) begin
dbg_ack_cnt <= dbg_ack_cnt-2'd1;
end
end
end
// Check that rvfi_dbg_ack is preceeded by dbg_ack
a_rvfi_dbg_dbg_ack :
assert property (@(posedge clk_i) disable iff (!rst_ni)
(rvfi_dbg_ack |-> (dbg_ack_cnt != 0)))
else `uvm_error("rvfi", "rvfi_dbg not preceeded by dbg_ack")
// rvfi_trap[2] should always be followed by rvfi_dbg
a_rvfi_trap_dbg :
assert property (@(posedge clk_i) disable iff (!rst_ni)
s_goto_next_rvfi_valid(rvfi_trap.debug) |->
rvfi_dbg != '0)
else `uvm_error("rvfi", "rvfi_trap.debug not followed by rvfi_dbg")
// Exception code in rvfi_trap.exception_cause should align with mcause exception cause in the following retired instruction
// This is exempt if we have an NMI, because NMI will result in mcause being updated in between retired instructions.
// Also, in debug mode, mcause is not updated.
a_rvfi_trap_mcause_align:
assert property (@(posedge clk_i) disable iff (!rst_ni)
(no_debug && !ctrl_fsm_i.pending_nmi) throughout s_goto_next_rvfi_valid(|rvfi_trap) |->
rvfi_intr.intr && (rvfi_csr_mcause_rdata[5:0] == rvfi_trap_q.exception_cause))
else `uvm_error("rvfi", "rvfi_trap.exception_cause not consistent with mcause[5:0] in following retired instruction")
// Exception code in rvfi_trap[11:9] should align with rvfi_dbg the following retired instruction
a_rvfi_trap_rvfi_dbg_align:
assert property (@(posedge clk_i) disable iff (!rst_ni)
s_goto_next_rvfi_valid(rvfi_trap.debug) |->
rvfi_dbg == rvfi_trap_q.debug_cause)
else `uvm_error("rvfi", "rvfi_trap.debug_cause not consistent with rvfi_dbg in following retired instruction")
// Check that rvfi_trap always indicate single step or etrigger if rvfi_trap[2:1] == 2'b11
a_rvfi_single_step_trap:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_valid && rvfi_trap.exception && rvfi_trap.debug
|->
(rvfi_trap.debug_cause == DBG_CAUSE_STEP)
or
(rvfi_trap.debug_cause == DBG_CAUSE_TRIGGER) && $past(etrigger_in_wb_i))
else `uvm_error("rvfi", "rvfi_trap[2:1] == 2'b11, but debug cause bits do not indicate single stepping or trigger")
// Check that dcsr.cause and mcause exception align with rvfi_trap when rvfi_trap[2:1] == 2'b11
// rvfi_intr should also always be set in this case
a_rvfi_trap_step_exception:
assert property (@(posedge clk_i) disable iff (!rst_ni)
s_goto_next_rvfi_valid(rvfi_trap.exception && rvfi_trap.debug)
|->
((rvfi_dbg == DBG_CAUSE_STEP) && (rvfi_csr_dcsr_rdata[8:6] == DBG_CAUSE_STEP) ||
(rvfi_dbg == DBG_CAUSE_TRIGGER) && (rvfi_csr_dcsr_rdata[8:6] == DBG_CAUSE_TRIGGER)) &&
(rvfi_csr_mcause_rdata[5:0] == $past(rvfi_trap.exception_cause)) &&
rvfi_intr.intr)
else `uvm_error("rvfi", "dcsr.cause, mcause and rvfi_intr not as expected following an exception during single step")
// When dcsr.nmip is set, the next retired instruction should be the NMI handler (except in debug mode).
// rvfi_intr should also be set. Checking when ctrl_fsm_i.nmi_mtvec_is stable as the mtvec index may change in CLINT mode.
a_rvfi_nmip_nmi_handler:
assert property (@(posedge clk_i) disable iff (!rst_ni)
(no_debug && $stable(mtvec_addr_i) && $stable(ctrl_fsm_i.nmi_mtvec_index)) throughout s_goto_next_rvfi_valid(rvfi_csr_dcsr_rdata[3]) |->
rvfi_intr.intr &&
(rvfi_pc_rdata == {mtvec_addr_i, ctrl_fsm_i.nmi_mtvec_index, 2'b00}) &&
((rvfi_csr_mcause_rdata[10:0] == INT_CAUSE_LSU_LOAD_FAULT) || (rvfi_csr_mcause_rdata[10:0] == INT_CAUSE_LSU_STORE_FAULT)))
else `uvm_error("rvfi", "dcsr.nmip not followed by rvfi_intr and NMI handler")
end
// An external haltrequest will kill all pipeline stages. Check that in_trap_clr is never true for such debug entries.
// in_trap_clr == 1 means that the rvfi_intr associated with the first instruction of an interrupt- or exception handler
// has reached RVFI outputs, and any internal tracking of this state within RVFI can be cleared. Killing all stages makes this
// tracked in_trap to not reach RVFI outputs.
a_no_clr_on_haltreq:
assert property (@(posedge clk_i) disable iff (!rst_ni)
(pc_mux_debug) &&
(ctrl_fsm_i.debug_cause == DBG_CAUSE_HALTREQ)
|->
!in_trap_clr)
else `uvm_error("rvfi", "in_trap_clr is active when going to debug due to external haltrequest")
// If the WB stage of RVFI contains an in_trap at the time of synchronous debug entry, the in_trap_clr
// must be 1, signaling that the trap info reached rvfi_intr and any internal tracking must be cleared.
a_clr_on_sync_dbg_entry:
assert property (@(posedge clk_i) disable iff (!rst_ni)
(pc_mux_debug) &&
in_trap[STAGE_WB].intr &&
(ctrl_fsm_i.debug_cause != DBG_CAUSE_HALTREQ)
|->
in_trap_clr)
else `uvm_error("rvfi", "in_trap_clr not active when going to debug due to a synchronous cause")
// Check that no other in_trap than the one in WB can be present in the pipeline at the same time.
a_single_in_trap_tracked:
assert property (@(posedge clk_i) disable iff (!rst_ni)
in_trap_clr
|->
!((in_trap[STAGE_EX] && (pc_wb_i != pc_ex_i)) ||
(in_trap[STAGE_ID] && (pc_wb_i != pc_id_i)) ||
(in_trap[STAGE_IF] && (pc_wb_i != pc_if_i))))
else `uvm_error("rvfi", "More than one in_trap at the same time")
// Check that rvfi_valid and rvfi_trap.debug is correctly set for single step.
//
a_single_step_rvfi_valid_trap:
assert property (@(posedge clk_i) disable iff (!rst_ni)
pc_mux_debug && // Debug entry (DEBUG_TAKEN)
(ctrl_fsm_i.debug_cause == DBG_CAUSE_STEP) && // due to single step
$past(wb_valid_lastop) // An instruction was retired previous cycle
|->
(rvfi_valid && rvfi_trap.debug)) // Must set rvfi_valid and trap.debug
else `uvm_error("rvfi", "No rvfi_valid or rvfi_trap for single step.")
// Check that rvfi_valid and rvfi_trap.debug is correctly set for etrigger.
//
a_etrigger_rvfi_valid_trap:
assert property (@(posedge clk_i) disable iff (!rst_ni)
pc_mux_debug && // Debug entry (DEBUG_TAKEN)
(ctrl_fsm_i.debug_cause == DBG_CAUSE_TRIGGER) && // due to trigger
$past(wb_valid_lastop) // Triggers other than etrigger halts pipeline, this must be etrigger
|->
(rvfi_valid && rvfi_trap.debug && rvfi_trap.exception)) // Must set rvfi_valid and trap.debug + trap.exception
else `uvm_error("rvfi", "No rvfi_valid or rvfi_trap for etrigger.")
// Check that cv32e40x_rvfi_instr_obi tracks alignment buffer
a_rvfi_instr_obi_addr:
assert property (@(posedge clk_i) disable iff (!rst_ni)
if_valid_i && id_ready_i && (obi_instr_if.resp_payload.mpu_status == MPU_OK) |->
(pc_if_i[31:2] == obi_instr_if.req_payload.addr[31:2]))
else `uvm_error("rvfi", "rvfi_instr_obi addr does not track alignment buffer")
a_rvfi_instr_obi_rdata_compressed:
assert property (@(posedge clk_i) disable iff (!rst_ni)
if_valid_i && id_ready_i && prefetch_compressed_if_i && (obi_instr_if.resp_payload.mpu_status == MPU_OK) |->
(prefetch_instr_if_i.bus_resp.rdata[15:0] == obi_instr_if.resp_payload.bus_resp.rdata[15:0]))
else `uvm_error("rvfi", "rvfi_instr_obi compressed rdata does not track alignment buffer")
a_rvfi_instr_obi_rdata_uncompressed:
assert property (@(posedge clk_i) disable iff (!rst_ni)
if_valid_i && id_ready_i && !prefetch_compressed_if_i && (obi_instr_if.resp_payload.mpu_status == MPU_OK) |->
(prefetch_instr_if_i.bus_resp.rdata[31:0] == obi_instr_if.resp_payload.bus_resp.rdata[31:0]))
else `uvm_error("rvfi", "rvfi_instr_obi uncompressed rdata does not track alignment buffer")
a_rvfi_instr_obi_err:
assert property (@(posedge clk_i) disable iff (!rst_ni)
if_valid_i && id_ready_i && (obi_instr_if.resp_payload.mpu_status == MPU_OK) |->
(prefetch_instr_if_i.bus_resp.err == obi_instr_if.resp_payload.bus_resp.err))
else `uvm_error("rvfi", "rvfi_instr_obi err does not track alignment buffer")
a_rvfi_instr_mpu_status:
assert property (@(posedge clk_i) disable iff (!rst_ni)
if_valid_i && id_ready_i |->
(prefetch_instr_if_i.mpu_status == obi_instr_if.resp_payload.mpu_status))
else `uvm_error("rvfi", "rvfi_instr_obi mpu_status does not track alignment buffer")
// Check that instructions fetched over two OBI transfers have the same OBI prot.
// Ideally, this should be checked with a design assertion, but that is cumbersome since the aligmnent buffer interprets rdata to decide if an instruction is compressed or not.
// By this time, the obi.prot for the given transfer(s) is no longer available.
a_rvfi_instr_split_transfer_obi_prot:
assert property (@(posedge clk_i) disable iff (!rst_ni)
prefetch_valid_if_i && prefetch_ready_if_i && !prefetch_compressed_if_i && (prefetch_addr_if_i[1:0] != 2'b00 && (obi_instr_if.resp_payload.mpu_status == MPU_OK)) |->
obi_instr_fifo_q[obi_instr_rptr_q].req_payload.prot == obi_instr_fifo_q[obi_instr_rptr_q_inc].req_payload.prot)
else `uvm_error("rvfi", "rvfi_instr_obi prot not the same for split transfers")
// The following assertions and support logic check that memory transfers reported on rvfi_mem are consistent with LSU OBI transfers
localparam int unsigned OBI_FIFO_SIZE = 32; // FIFO needs to be able to hold at least 2*13 memory transfers (because Zc can cause 13 transfers, and these can be split misaligned)
localparam int unsigned MAX_NUM_MEMOP = 13; // This must be set to the maximum number of memory operations per retired instruction. If set too high it will result in unreachable covers
typedef struct packed {
bit valid;
bit ld_str_blocked;
bit [32*NMEM-1:0] addr;
bit [ 4*NMEM-1:0] rmask;
bit [ 4*NMEM-1:0] wmask;
bit [32*NMEM-1:0] rdata;
bit [32*NMEM-1:0] wdata;
bit [ 1*NMEM-1:0] exokay;
bit [ 1*NMEM-1:0] err;
bit [ 3*NMEM-1:0] prot;
bit [ 6*NMEM-1:0] atop;
bit [ 2*NMEM-1:0] memtype;
bit [ 1*NMEM-1:0] dbg;
} rvfi_mem_t;
// Return number of memory operations based on rvfi_mem_rmaks/wmask
function automatic bit [$clog2(NMEM)-1:0] get_num_memop(bit [4*NMEM-1:0] rvfi_mem_mask);
bit [$clog2(NMEM)-1:0] num_memop = 0;
for (int i=0; i<NMEM; i++) begin
if(|rvfi_mem_mask[i*4 +: 4]) begin
num_memop++;
end
end
return num_memop;
endfunction : get_num_memop
// Generate bitmask from byte-enables
function automatic bit [31:0] get_bitmask(bit [3:0] be);
bit [31:0] mask;
mask[7:0] = {8{be[0]}};
mask[15:8] = {8{be[1]}};
mask[23:16] = {8{be[2]}};
mask[31:24] = {8{be[3]}};
return mask;
endfunction : get_bitmask
// Identify split tranfers based on address LSB's and be
function automatic bit split_xfer(bit [1:0] addr_lsb, bit [3:0] be);
if((addr_lsb + $countones(be)) > 4) begin
return 1'b1;
end
else begin
return 1'b0;
end
endfunction : split_xfer
// Helper signals to identify reads and writes on RVFI
bit [MAX_NUM_MEMOP-1:0] rvfi_mem_xfer;
bit [MAX_NUM_MEMOP-1:0] rvfi_mem_read;
bit [MAX_NUM_MEMOP-1:0] rvfi_mem_write;
bit split_transfer;
// OBI FIFOs and pointers
obi_data_req_t [OBI_FIFO_SIZE-1:0] data_obi_req_fifo;
obi_data_resp_t [OBI_FIFO_SIZE-1:0] data_obi_resp_fifo;
bit [$clog2(OBI_FIFO_SIZE)-1:0] rd_ptr, rd_ptr_inc, rd_ptr_n;
bit [$clog2(OBI_FIFO_SIZE)-1:0] wr_req_ptr, wr_resp_ptr;
// Indicate number of memory operations per instruction
bit [$clog2(NMEM):0] num_memop;
rvfi_mem_t rvfi_mem, rvfi_mem_dly, rvfi_mem_exp;
assign rvfi_mem.valid = rvfi_valid;
assign rvfi_mem.ld_str_blocked = rvfi_trap.trap && (
(rvfi_trap.exception &&
((rvfi_trap.exception_cause == 6'h4) || // Load Address Misaligned
(rvfi_trap.exception_cause == 6'h5) || // Load Access Fault
(rvfi_trap.exception_cause == 6'h6) || // Store/AMO Address Misaligned
(rvfi_trap.exception_cause == 6'h7))) || // Store/AMO Access Fault
(rvfi_trap.debug &&
((rvfi_trap.debug_cause == 3'h1) || // Debug Breakpoint
(rvfi_trap.debug_cause == 3'h2)))); // Debug trigger match
assign rvfi_mem.addr = rvfi_mem_addr;
assign rvfi_mem.rmask = rvfi_mem_rmask;
assign rvfi_mem.wmask = rvfi_mem_wmask;
assign rvfi_mem.rdata = rvfi_mem_rdata;
assign rvfi_mem.wdata = rvfi_mem_wdata;
assign rvfi_mem.exokay = rvfi_mem_exokay;
assign rvfi_mem.err = rvfi_mem_err;
assign rvfi_mem.prot = rvfi_mem_prot;
assign rvfi_mem.atop = rvfi_mem_atop;
assign rvfi_mem.memtype = rvfi_mem_memtype;
assign rvfi_mem.dbg = rvfi_mem_dbg;
localparam MAX_GNT_DLY = 2;
bit [$clog2(MAX_GNT_DLY+1):0] obi_gnt_dly_cnt;
bit obi_gnt_delay_ok;
// Keep track of cycles with obi request but no grant
always_ff @(posedge clk_i, negedge rst_ni) begin
if(!rst_ni) begin
obi_gnt_dly_cnt <= '0;
end else begin
if(m_c_obi_data_if.s_req.req && !m_c_obi_data_if.s_gnt.gnt) begin
if (obi_gnt_dly_cnt <= MAX_GNT_DLY) begin
obi_gnt_dly_cnt <= obi_gnt_dly_cnt + 1'b1;
end
end
else begin
obi_gnt_dly_cnt <= '0;
end
end
end
// Indicate that the OBI grant delay is small enough to allow the OBI FIFO to be populated
// before rvfi_mem_dly.valid is set
assign obi_gnt_delay_ok = obi_gnt_dly_cnt <= MAX_GNT_DLY;
// Generate delayed version of rvfi_mem
// Needed because write buffer can cause OBI tranfers to be accepted after it's signaled on RVFI
always_ff @(posedge clk_i, negedge rst_ni) begin
if(!rst_ni) begin
rvfi_mem_dly <= '0;
end
else begin
rvfi_mem_dly <= $past(rvfi_mem, MAX_GNT_DLY-1);
end
end
// FIFOs for OBI transfers
always_ff @(posedge clk_i, negedge rst_ni) begin
if(!rst_ni) begin
data_obi_req_fifo <= '0;
data_obi_resp_fifo <= '0;
wr_req_ptr <= '0;
wr_resp_ptr <= '0;
rd_ptr <= '0;
end
else begin
// Update read pointer
rd_ptr <= rd_ptr_n;
// Populate OBI req FIFO
if (m_c_obi_data_if.s_req.req && m_c_obi_data_if.s_gnt.gnt) begin
data_obi_req_fifo[wr_req_ptr] <= m_c_obi_data_if.req_payload;
wr_req_ptr <= wr_req_ptr + 1'b1;
end
// Populate OBI resp FIFO
if (m_c_obi_data_if.s_rvalid.rvalid) begin
data_obi_resp_fifo[wr_resp_ptr] <= m_c_obi_data_if.resp_payload;
wr_resp_ptr <= wr_resp_ptr + 1'b1;
end
end
end
// Pointer to next OBI transfer. Used for split misaligned
assign rd_ptr_inc = rd_ptr + 1'b1;
// Extract number of memory operation in retired instruction
assign num_memop = get_num_memop(rvfi_mem_dly.wmask) + get_num_memop(rvfi_mem_dly.rmask);
// Assumption here is that if the first transfer is a split, the following ones will be as well.
// The reasoning is that Zc push/pop will always do word read/writes, meaning that if the first is split, so will the rest
assign split_transfer = split_xfer(rvfi_mem_dly.addr[1:0], rvfi_mem_dly.wmask[3:0] | rvfi_mem_dly.rmask[3:0]);
// Increment read pointer based on memory operations in the retired instruction
always_comb begin
rd_ptr_n = rd_ptr;
if (|rvfi_mem_xfer) begin
if(split_transfer) begin
// For split transfers, we'll consume 2 OBI tranfers per memory operation
rd_ptr_n = rd_ptr + ($clog2(OBI_FIFO_SIZE))'(2*num_memop);
end
else begin
rd_ptr_n = rd_ptr + ($clog2(OBI_FIFO_SIZE))'(1*num_memop);
end
end
end
// FIFO depth and assertions are designed to support up to MAX_NUM_MEMOP memory operations per retired instruction.
// Make sure this assumption holds
a_rvfi_mem_max_num_memop:
assert property (@(posedge clk_i) disable iff (!rst_ni)
|rvfi_mem_xfer |-> num_memop <= MAX_NUM_MEMOP)
else `uvm_error("rvfi", "Memory operations > MAX_NUM_MEMOP. Potential overflow in SVA support logic.")
genvar i_memop;
generate
for(i_memop = 0; i_memop < MAX_NUM_MEMOP; i_memop++) begin: rvfi_mem_asrt
assign rvfi_mem_read[i_memop] = rvfi_mem_dly.valid && (|rvfi_mem_dly.rmask[(4*i_memop) +: 4]);
assign rvfi_mem_write[i_memop] = rvfi_mem_dly.valid && (|rvfi_mem_dly.wmask[(4*i_memop) +: 4]);
assign rvfi_mem_xfer[i_memop] = rvfi_mem_read[i_memop] || rvfi_mem_write[i_memop];
// Helper signals
bit [3:0] exp_rvfi_mem_mask;
bit [31:0] split_1st_wdata;
bit [31:0] split_2nd_wdata;
bit [31:0] split_1st_rdata;
bit [31:0] split_2nd_rdata;
bit split_1st_err;
bit split_2nd_err;
bit [2:0] split_2nd_shift;
bit [$clog2(OBI_FIFO_SIZE)-1:0] rd_ptr_memop, rd_ptr_memop_inc;
// Assemble expected transaction on RVFI, based on OBI FIFO
always_comb begin
rvfi_mem_exp.addr [32*i_memop +: 32] = '0;
rvfi_mem_exp.rmask [ 4*i_memop +: 4] = '0;
rvfi_mem_exp.wmask [ 4*i_memop +: 4] = '0;
rvfi_mem_exp.rdata [32*i_memop +: 32] = '0;
rvfi_mem_exp.wdata [32*i_memop +: 32] = '0;
rvfi_mem_exp.exokay [ 1*i_memop +: 1] = '0;
rvfi_mem_exp.err [ 1*i_memop +: 1] = '0;
rvfi_mem_exp.prot [ 3*i_memop +: 3] = '0;
rvfi_mem_exp.atop [ 6*i_memop +: 6] = '0;
rvfi_mem_exp.memtype [ 2*i_memop +: 2] = '0;
rvfi_mem_exp.dbg [ 1*i_memop +: 1] = '0;
exp_rvfi_mem_mask = '0;
split_2nd_shift = '0;
split_1st_wdata = '0;
split_2nd_wdata = '0;
split_1st_rdata = '0;
split_2nd_rdata = '0;
split_1st_err = '0;
split_2nd_err = '0;
rd_ptr_memop = '0;
rd_ptr_memop_inc = '0;
if (rvfi_mem_xfer[i_memop]) begin
if(split_transfer) begin
// Split misaligned transfer(s)
rd_ptr_memop = rd_ptr + ($clog2(OBI_FIFO_SIZE))'(2*i_memop); // Split transfers are reported in one memory operation on rvfi_mem, but results in 2 OBI transfers.
rd_ptr_memop_inc = rd_ptr_memop + 1'b1;
split_2nd_shift = 3'h4 - data_obi_req_fifo[rd_ptr_memop].addr[1:0];
exp_rvfi_mem_mask = (data_obi_req_fifo[rd_ptr_memop].be >> data_obi_req_fifo[rd_ptr_memop].addr[1:0]) |
(data_obi_req_fifo[rd_ptr_memop_inc].be << split_2nd_shift);
// Extract data from the two OBI transfers
split_1st_wdata = data_obi_req_fifo[rd_ptr_memop].wdata & get_bitmask(data_obi_req_fifo[rd_ptr_memop].be);
split_2nd_wdata = data_obi_req_fifo[rd_ptr_memop_inc].wdata & get_bitmask(data_obi_req_fifo[rd_ptr_memop_inc].be);
split_1st_rdata = data_obi_resp_fifo[rd_ptr_memop].rdata & get_bitmask(data_obi_req_fifo[rd_ptr_memop].be);
split_2nd_rdata = data_obi_resp_fifo[rd_ptr_memop_inc].rdata & get_bitmask(data_obi_req_fifo[rd_ptr_memop_inc].be);
split_1st_err = data_obi_resp_fifo[rd_ptr_memop].err[0] && !data_obi_req_fifo[rd_ptr_memop].memtype[0];
split_2nd_err = data_obi_resp_fifo[rd_ptr_memop_inc].err[0] && !data_obi_req_fifo[rd_ptr_memop_inc].memtype[0];
// Align rdata/wdata to correspond to expected rdata/wdata on RVFI
rvfi_mem_exp.wdata[(32*i_memop) +: 32] = split_1st_wdata >> (8 * data_obi_req_fifo[rd_ptr_memop].addr[1:0]) |
split_2nd_wdata << (8 * split_2nd_shift);
rvfi_mem_exp.rdata[(32*i_memop) +: 32] = split_1st_rdata >> (8 * data_obi_req_fifo[rd_ptr_memop].addr[1:0]) |
split_2nd_rdata << (8 * split_2nd_shift);
rvfi_mem_exp.err[( 1*i_memop) +: 1] = split_1st_err | split_2nd_err;
end
else begin
rd_ptr_memop = rd_ptr + ($clog2(OBI_FIFO_SIZE))'(i_memop);
exp_rvfi_mem_mask = data_obi_req_fifo[rd_ptr_memop].be >> data_obi_req_fifo[rd_ptr_memop].addr[1:0];
// Align rdata/wdata to correspond to expected rdata/wdata on RVFI
rvfi_mem_exp.wdata[(32*i_memop) +: 32] = data_obi_req_fifo[rd_ptr_memop].wdata >> (8 * data_obi_req_fifo[rd_ptr_memop].addr[1:0]);
rvfi_mem_exp.rdata[(32*i_memop) +: 32] = data_obi_resp_fifo[rd_ptr_memop].rdata >> (8 * data_obi_req_fifo[rd_ptr_memop].addr[1:0]);
rvfi_mem_exp.err [(1*i_memop) +: 1] = data_obi_resp_fifo[rd_ptr_memop].err[0] && !data_obi_req_fifo[rd_ptr_memop].memtype[0];
end
// Addr and prot are equal for both transfers in a split transfer
rvfi_mem_exp.addr [(32*i_memop) +: 32] = data_obi_req_fifo[rd_ptr_memop].addr;
rvfi_mem_exp.prot [(3*i_memop) +: 3] = data_obi_req_fifo[rd_ptr_memop].prot;
rvfi_mem_exp.atop [(6*i_memop) +: 6] = 6'd0;
rvfi_mem_exp.memtype[(2*i_memop) +: 2] = data_obi_req_fifo[rd_ptr_memop].memtype;
rvfi_mem_exp.dbg [(1*i_memop) +: 1] = data_obi_req_fifo[rd_ptr_memop].dbg;
rvfi_mem_exp.exokay [(1*i_memop) +: 1] = 1'b0;
if(rvfi_mem_read[i_memop]) begin
rvfi_mem_exp.rmask[(4*i_memop) +: 4] = exp_rvfi_mem_mask;
end
else begin
rvfi_mem_exp.wmask[(4*i_memop) +: 4] = exp_rvfi_mem_mask;
end
end // if (rvfi_mem_xfer[i_memop])
end
// Assert that rvfi_mem is consistent with OBI transfers
a_rvfi_mem_consistency_read_addr:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.addr[(32*i_memop) +: 32] == rvfi_mem_dly.addr[(32*i_memop) +: 32])
else `uvm_error("rvfi", "rvfi_mem_addr not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_rmask:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.rmask[(4*i_memop) +: 4] == rvfi_mem_dly.rmask[(4*i_memop) +: 4])
else `uvm_error("rvfi", "rvfi_mem_rmask not consistent with OBI transfers")
a_rvfi_mem_consistency_rdata:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] && !rvfi_mem_dly.ld_str_blocked |->
(rvfi_mem_exp.rdata[(32*i_memop) +: 32] & get_bitmask(rvfi_mem_exp.rmask[(4*i_memop) +: 4])) ==
(rvfi_mem_dly.rdata[(32*i_memop) +: 32] & get_bitmask(rvfi_mem_dly.rmask[(4*i_memop) +: 4])))
else `uvm_error("rvfi", "rvfi_mem_rdata not consistent with OBI transfers")
a_rvfi_mem_consistency_read_prot:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.prot[(3*i_memop) +: 3] == rvfi_mem_dly.prot[(3*i_memop) +: 3])
else `uvm_error("rvfi", "rvfi_mem_prot not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_atop:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.atop[(6*i_memop) +: 6] == rvfi_mem_dly.atop[(6*i_memop) +: 6])
else `uvm_error("rvfi", "rvfi_mem_atop not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_memtype:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.memtype[(2*i_memop) +: 2] == rvfi_mem_dly.memtype[(2*i_memop) +: 2])
else `uvm_error("rvfi", "rvfi_mem_memtype not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_dbg:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.dbg[(1*i_memop) +: 1] == rvfi_mem_dly.dbg[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_dbg not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_exokay:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.exokay[(1*i_memop) +: 1] == rvfi_mem_dly.exokay[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_exokay not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_read_err:
assert property (@(posedge clk_i) disable iff (!rst_ni)
rvfi_mem_read[i_memop] |-> rvfi_mem_exp.err[(1*i_memop) +: 1] == rvfi_mem_dly.err[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_err not consistent with OBI transfers for reads")
a_rvfi_mem_consistency_write_addr:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.addr[(32*i_memop) +: 32] == rvfi_mem_dly.addr[(32*i_memop) +: 32])
else `uvm_error("rvfi", "rvfi_mem_addr not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_wmask:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.wmask[(4*i_memop) +: 4] == rvfi_mem_dly.wmask[(4*i_memop) +: 4])
else `uvm_error("rvfi", "rvfi_mem_wdata not consistent with OBI transfers")
a_rvfi_mem_consistency_wdata:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |->
(rvfi_mem_exp.wdata[(32*i_memop) +: 32] & get_bitmask(rvfi_mem_exp.wmask[(4*i_memop) +: 4])) ==
(rvfi_mem_dly.wdata[(32*i_memop) +: 32] & get_bitmask(rvfi_mem_dly.wmask[(4*i_memop) +: 4])))
else `uvm_error("rvfi", "rvfi_mem_wdata not consistent with OBI transfers")
a_rvfi_mem_consistency_write_prot:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.prot[(3*i_memop) +: 3] == rvfi_mem_dly.prot[(3*i_memop) +: 3])
else `uvm_error("rvfi", "rvfi_mem_prot not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_atop:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.atop[(6*i_memop) +: 6] == rvfi_mem_dly.atop[(6*i_memop) +: 6])
else `uvm_error("rvfi", "rvfi_mem_atop not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_memtype:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.memtype[(2*i_memop) +: 2] == rvfi_mem_dly.memtype[(2*i_memop) +: 2])
else `uvm_error("rvfi", "rvfi_mem_memtype not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_dbg:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.dbg[(1*i_memop) +: 1] == rvfi_mem_dly.dbg[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_dbg not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_exokay:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.exokay[(1*i_memop) +: 1] == rvfi_mem_dly.exokay[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_exokay not consistent with OBI transfers for writes")
a_rvfi_mem_consistency_write_err:
assert property (@(posedge clk_i) disable iff (!rst_ni)
obi_gnt_delay_ok && rvfi_mem_write[i_memop] |-> rvfi_mem_exp.err[(1*i_memop) +: 1] == rvfi_mem_dly.err[(1*i_memop) +: 1])
else `uvm_error("rvfi", "rvfi_mem_err not consistent with OBI transfers for writes")
end
endgenerate
endmodule