-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathraster_scan.py
142 lines (116 loc) · 4.76 KB
/
raster_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
__author__ = 'Guilherme Beneti Martins'
import numpy as np
from matplotlib import pyplot as plt
from scipy.io import loadmat
from spas import *
def reconstruction_hadamard(acquisition_metadata, Q, M, N=64):
ind_opt = acquisition_metadata.patterns[1::2]
ind_opt = np.array(ind_opt)/2
ind_opt = ind_opt - 1
ind_opt = ind_opt.astype('int')
M_breve = M[0::2,:] - M[1::2,:]
M_Had = np.zeros((N*N, M.shape[1]))
M_Had[ind_opt,:] = M_breve
f = np.matmul(Q,M_Had) # Q.T = Q (Q transposed is Q)
frames = np.reshape(f,(N,N,M.shape[1]))
return frames
def reconstruction_raster(M, N=64):
frames = np.reshape(M,(N,N,M.shape[1]))
return frames
#%% Init
file = loadmat('../data/matlab.mat')
Q = file['Q']
spectrometer, DMD, DMD_initial_memory = init()
#%% Setup and acquire Hadamard
times = [1] # Integration time array
for integration_time in times:
metadata = MetaData(
output_directory='../data/17-03-2021-raster-starsector-light-off/',
pattern_order_source='../communication/communication.txt',
pattern_source='../Patterns/PosNeg/DMD_Hadamard_64x64/Hadamard_64x64_',
experiment_name='/hadamard_' + str(integration_time) + '_OD13_025ms',
light_source='White lamp LED',
object='Starsector',
filter='None',
description=f'Hadamard acquisition with integration_time = {integration_time} ms. OD = 1.3. Ambient light off')
acquisition_parameters = AcquisitionParameters(
pattern_compression=1.0,
pattern_dimension_x=64,
pattern_dimension_y=64)
spectrometer_params, DMD_params, wavelenghts = setup(
spectrometer=spectrometer,
DMD=DMD,
DMD_initial_memory=DMD_initial_memory,
metadata=metadata,
acquisition_params=acquisition_parameters,
integration_time=integration_time,)
spectral_data, timestamps, measurement_time = acquire(
ava=spectrometer,
DMD=DMD,
metadata=metadata,
spectrometer_params=spectrometer_params,
DMD_params=DMD_params,
acquisition_params=acquisition_parameters,
wavelengths=wavelenghts,)
frames = reconstruction_hadamard(acquisition_parameters, Q, spectral_data)
plt.figure()
plt.imshow(np.sum(frames,axis=2))
plt.title(f'Sum of all wavelenghts (Hadamard {integration_time} ms)')
plt.show()
plt.savefig(f'{metadata.output_directory[:-1]}{metadata.experiment_name}_recon.png')
plt.figure()
plt.plot(wavelenghts, spectral_data[0,:])
plt.plot(wavelenghts, spectral_data[2,:])
plt.legend(['1st pattern','3rd pattern'])
plt.xlabel('Wavelenghts')
plt.ylabel('Counts')
plt.show()
plt.savefig(f'{metadata.output_directory[:-1]}{metadata.experiment_name}_spect.png')
#%% Setup and acquire Raster
times = [64] # Integration time array
for integration_time in times:
metadata = MetaData(
output_directory='../data/17-03-2021-raster-starsector-light-off/',
pattern_order_source='../communication/raster.txt',
pattern_source='../Patterns/RasterScan_64x64/RasterScan_64x64_1_',
experiment_name='/raster_' + str(integration_time) + '_OD13_64ms',
light_source='White lamp LED',
object='Starsector',
filter='None',
description=f'Raster acquisition with integration_time = {integration_time} ms.OD = 1.3. Ambient light off')
acquisition_parameters = AcquisitionParameters(
pattern_compression=1.0,
pattern_dimension_x=64,
pattern_dimension_y=64)
spectrometer_params, DMD_params, wavelenghts = setup(
spectrometer=spectrometer,
DMD=DMD,
DMD_initial_memory=DMD_initial_memory,
metadata=metadata,
acquisition_params=acquisition_parameters,
integration_time=integration_time,)
spectral_data, timestamps, measurement_time = acquire(
ava=spectrometer,
DMD=DMD,
metadata=metadata,
spectrometer_params=spectrometer_params,
DMD_params=DMD_params,
acquisition_params=acquisition_parameters,
wavelengths=wavelenghts,)
frames = reconstruction_raster(spectral_data)
plt.figure()
plt.imshow(np.sum(frames,axis=2))
plt.title(f'Sum of all wavelenghts (Raster {integration_time} ms)')
plt.show()
# plt.savefig(f'{metadata.output_directory[:-1]}{metadata.experiment_name}_recon.png')
plt.figure()
plt.plot(wavelenghts, spectral_data[0,:])
plt.plot(wavelenghts, spectral_data[2,:])
plt.legend(['1st pattern','3rd pattern'])
plt.xlabel('Wavelenghts')
plt.ylabel('Counts')
plt.show()
# plt.savefig(f'{metadata.output_directory[:-1]}{metadata.experiment_name}_spect.png')
#%% Disconnect
disconnect(spectrometer, DMD)