-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexample_code.py
97 lines (83 loc) · 2.77 KB
/
example_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
This scripts generates plots presented in figure 2 of
SPyRiT: AN OPEN SOURCE PACKAGE FOR SINGLE-PIXEL IMAGING BASED ON DEEP LEARNING
"""
# %%
import torch
import matplotlib.pyplot as plt
from spyrit.core.meas import Linear, LinearSplit, HadamSplit2d
from spyrit.core.noise import Gaussian, Poisson
from spyrit.core.prep import Unsplit, UnsplitRescale
from spyrit.core.inverse import PseudoInverse
from spyrit.core.torch import walsh_matrix_2d
check = True # check with true image
#%% Load image
if check:
import torchvision
image_path = "./data/images/figure_2/ILSVRC2012_test_00000002.jpeg"
x = torchvision.io.read_image(image_path, torchvision.io.ImageReadMode.GRAY)
# Resize image
x = torchvision.transforms.functional.resize(x, (64, 64))
# Reshape image
x = x.reshape(1, 1, 64, 64)
print(f"Shape of input image: {x.shape}")
x = x.detach()
x = x.to(dtype=torch.float)
x /= 255
x = x.squeeze()
# %% Linear, noiseless, pseudo-inverse
if not check:
# 4 images of shape (64, 64) with values in (0,1)
x = torch.empty(4, 64, 64).uniform_(0, 1)
# Hadamard matrix in "2D" with shape (64*64, 64*64)
H = walsh_matrix_2d(64)
# Linear operator in 2D, working on images with shape (64, 64)
meas_op = Linear(H, (64,64))
# Measurement vectors with shape (4, 4096)
y = meas_op(x)
# Pseudo inverse solution with shape (4, 64, 64)
pinv = PseudoInverse(meas_op)
x_rec = pinv(y)
# plot
if check:
plt.figure()
plt.imshow(x_rec.cpu().numpy(), cmap='gray')
plt.colorbar()
# %% LinearSplit, Gaussian noise, pseudo-inverse
# Linear operator in 2D, working on images with shape (64, 64)
meas_op = LinearSplit(H, (64,64))
# Gaussian noise
meas_op.noise_model = Gaussian(2)
# Measurement vectors with shape (4, 8192)
y = meas_op(x)
# Preprocessed measurement vectors with shape (4, 4096)
prep = Unsplit()
m = prep(y) # y+ - y-
# Pseudo inverse solution with shape (4, 64, 64)
pinv = PseudoInverse(meas_op)
x_rec = pinv(m)
# plot
if check:
plt.figure()
plt.imshow(x_rec.cpu().numpy(), cmap='gray')
plt.colorbar()
# %% HadamSplit2d, Subsampling x4, Poisson noise, pseudo-inverse
# Low-frequency sampling map with shape (64, 64)
sampling_map = torch.ones((64, 64))
sampling_map[:, 64 // 2 :] = 0
sampling_map[64 // 2 :, :] = 0
meas_op = HadamSplit2d(64, 64**2//4, order=sampling_map, reshape_output=True)
# Poisson noise
meas_op.noise_model = Poisson(100)
# Measurement vectors with shape (4, 2048)
y = meas_op(x)
# Preprocessed measurement vectors with shape (4, 1024)
prep = UnsplitRescale(100) # (y+ - y-)/alpha
m = prep(y)
# HadamSplit2d has a fast_pinv() method to get the pseudo inverse solution.
x_rec = meas_op.fast_pinv(m) # shape is (4, 64, 64)
# plot
if check:
plt.figure()
plt.imshow(x_rec.cpu().numpy(), cmap='gray')
plt.colorbar()