Optica 2023 pulibcation : Quantitative hyperspectral microscopy using encoded illumination and neural networks with physics priors
This code generates the figures in the article and allow to study the data used.
Authors: S Crombez,N Ducros
Contact: [email protected], CREATIS Laboratory, University of Lyon, France.
-
We recommend creating a virtual (e.g., conda) environment first.
# conda install conda create --name new-env conda activate new-env conda install spyder conda install -c conda-forge matplotlib conda install -c conda-forge jupyterlab conda install -c anaconda scikit-image conda install -c anaconda h5py conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
Alternatively, you can clone an existing environment with
conda create --name new-env --clone existing-env
-
Clone the spyrit package, and install the version in the
towards_v2_fadoua
branchgit clone https://github.com/openspyrit/spyrit.git cd spyrit git checkout towards_v2 pip install -e .
-
Clone the spas package:
git clone https://github.com/openspyrit/spas.git cd spas pip install -e .
- Get source code and navigate to the
/2023_Optica/
foldergit clone https://github.com/openspyrit/spyrit-examples.git cd spyrit-examples/2023_Opyica/
- Download the models from this link A Changer