-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathdownload_model.py
72 lines (57 loc) · 1.98 KB
/
download_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#
# Copyright (c) 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import json
import shutil
import requests
import numpy as np
import tensorflow as tf
import keras
def preprocess(image, mean=0.5, std=0.5, shape=(224, 224)):
"""Scale, normalize and resizes images."""
image = image / 255.0
image = (image - mean) / std
image = tf.image.resize(image, shape)
return image
imagenet_labels_url = (
"https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt"
)
response = requests.get(imagenet_labels_url)
labels = [x for x in response.text.split("\n") if x != ""][1:]
tf_labels = tf.constant(labels, dtype=tf.string)
def postprocess(prediction, labels=tf_labels):
"""Convert from probs to labels."""
indices = tf.argmax(prediction, axis=-1)
label = tf.gather(params=labels, indices=indices)
return label
def export_model(model, labels):
@tf.function(input_signature=[tf.TensorSpec([None, None, None, 3], tf.float32)])
def serving_fn(image):
processed_img = preprocess(image)
probs = model(processed_img)
label = postprocess(probs)
return {"label": label}
return serving_fn
model = keras.applications.MobileNet()
model_dir = "./model"
model_version = 1
model_export_path = f"{model_dir}/{model_version}"
tf.saved_model.save(
model,
export_dir=model_export_path,
signatures={"serving_default": export_model(model, labels)},
)