-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathpython_executor_calculator.cc
265 lines (231 loc) · 11.5 KB
/
python_executor_calculator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//*****************************************************************************
// Copyright 2023 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <unordered_map>
#include "pythonnoderesources.hpp"
#include "src/python/ovms_py_tensor.hpp"
#pragma warning(push)
#pragma warning(disable : 4005 6001 6385 6386 6326 6011 6246 4456)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include "mediapipe/framework/calculator_framework.h"
#pragma GCC diagnostic pop
#pragma warning(pop)
#pragma warning(push)
#pragma warning(disable : 6326 28182 6011 28020)
#include <pybind11/embed.h> // everything needed for embedding
#include <pybind11/stl.h>
#pragma warning(pop)
#include "python_backend.hpp"
namespace py = pybind11;
using namespace py::literals;
using namespace ovms;
namespace mediapipe {
const std::string PYTHON_SESSION_SIDE_PACKET_TAG = "PYTHON_NODE_RESOURCES";
class PythonExecutorCalculator : public CalculatorBase {
std::shared_ptr<PythonNodeResources> nodeResources;
std::unique_ptr<PyObjectWrapper<py::iterator>> pyIteratorPtr;
bool hasLoopback{false};
// The calculator manages timestamp for outputs to work independently of inputs
// this way we can support timestamp continuity for more than one request in streaming scenario.
mediapipe::Timestamp outputTimestamp;
static void setInputsAndOutputsPacketTypes(CalculatorContract* cc) {
for (const std::string& tag : cc->Inputs().GetTags()) {
if (tag == "LOOPBACK") {
cc->Inputs().Tag(tag).Set<bool>();
} else {
cc->Inputs().Tag(tag).Set<PyObjectWrapper<py::object>>();
}
}
for (const std::string& tag : cc->Outputs().GetTags()) {
if (tag == "LOOPBACK") {
cc->Outputs().Tag(tag).Set<bool>();
} else {
cc->Outputs().Tag(tag).Set<PyObjectWrapper<py::object>>();
}
}
}
void validateInputTensor(const py::object& pyInput) {
try {
nodeResources->pythonBackend->validateOvmsPyTensor(pyInput);
} catch (UnexpectedPythonObjectError& e) {
throw UnexpectedInputPythonObjectError(e);
}
}
void prepareInputs(CalculatorContext* cc, std::vector<py::object>* pyInputs) {
for (const std::string& tag : cc->Inputs().GetTags()) {
if (tag != "LOOPBACK") {
if (cc->Inputs().Tag(tag).IsEmpty()) {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Received empty packet on input: " << tag
<< ". Execution will continue without that input.";
continue;
}
const py::object& pyInput = cc->Inputs().Tag(tag).Get<PyObjectWrapper<py::object>>().getObject();
validateInputTensor(pyInput);
pyInputs->push_back(pyInput);
}
}
}
void validateOutputTensor(const py::object& pyOutput) {
try {
nodeResources->pythonBackend->validateOvmsPyTensor(pyOutput);
} catch (UnexpectedPythonObjectError& e) {
throw UnexpectedOutputPythonObjectError(e);
}
}
void pushOutputs(CalculatorContext* cc, py::list pyOutputs, mediapipe::Timestamp& timestamp, bool pushLoopback) {
py::gil_scoped_acquire acquire;
for (py::handle pyOutputHandle : pyOutputs) {
py::object pyOutput = pyOutputHandle.cast<py::object>();
validateOutputTensor(pyOutput);
std::string outputName = pyOutput.attr("name").cast<std::string>();
auto it = nodeResources->outputsNameTagMapping.find(outputName);
if (it == nodeResources->outputsNameTagMapping.end()) {
throw UnexpectedOutputTensorError(outputName);
}
std::string outputTag = it->second;
if (cc->Outputs().HasTag(outputTag)) {
std::unique_ptr<PyObjectWrapper<py::object>> outputPtr = std::make_unique<PyObjectWrapper<py::object>>(pyOutput);
cc->Outputs().Tag(outputTag).Add(outputPtr.release(), timestamp);
}
}
if (pushLoopback) {
timestamp++;
cc->Outputs().Tag("LOOPBACK").Add(std::make_unique<bool>(true).release(), timestamp);
}
}
bool receivedNewData(CalculatorContext* cc) {
for (const std::string& tag : cc->Inputs().GetTags()) {
if (tag != "LOOPBACK") {
if (!cc->Inputs().Tag(tag).IsEmpty())
return true;
}
}
return false;
}
bool generatorInitialized() {
return pyIteratorPtr != nullptr;
}
bool generatorFinished() {
return pyIteratorPtr->getObject() == py::iterator::sentinel();
}
void generate(CalculatorContext* cc, mediapipe::Timestamp& timestamp) {
py::list pyOutputs = py::cast<py::list>(*pyIteratorPtr->getObject());
pushOutputs(cc, std::move(pyOutputs), timestamp, true);
++(pyIteratorPtr->getObject()); // increment iterator
}
void initializeGenerator(py::object generator) {
pyIteratorPtr = std::make_unique<PyObjectWrapper<py::iterator>>(generator);
}
void resetGenerator() {
pyIteratorPtr.reset();
}
void handleExecutionResult(CalculatorContext* cc, py::object executionResult) {
if (py::isinstance<py::list>(executionResult)) {
pushOutputs(cc, std::move(executionResult), outputTimestamp, false);
} else if (py::isinstance<py::iterator>(executionResult)) {
if (!hasLoopback)
throw BadPythonNodeConfigurationError("Execute yielded, but LOOPBACK is not defined in the node");
initializeGenerator(std::move(executionResult));
generate(cc, outputTimestamp);
} else {
throw UnexpectedPythonObjectError(executionResult, "list or generator");
}
}
public:
static absl::Status GetContract(CalculatorContract* cc) {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->GetNodeName() << "] GetContract start";
RET_CHECK(!cc->Inputs().GetTags().empty());
RET_CHECK(!cc->Outputs().GetTags().empty());
if (cc->Inputs().HasTag("LOOPBACK") != cc->Outputs().HasTag("LOOPBACK"))
return absl::Status(absl::StatusCode::kInvalidArgument, "If LOOPBACK is used, it must be defined on both input and output of the node");
setInputsAndOutputsPacketTypes(cc);
cc->InputSidePackets().Tag(PYTHON_SESSION_SIDE_PACKET_TAG).Set<PythonNodeResourcesMap>();
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->GetNodeName() << "] GetContract end";
return absl::OkStatus();
}
absl::Status Close(CalculatorContext* cc) final {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Close";
return absl::OkStatus();
}
absl::Status Open(CalculatorContext* cc) final {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Open start";
if (cc->Inputs().HasTag("LOOPBACK"))
hasLoopback = true;
PythonNodeResourcesMap nodeResourcesMap = cc->InputSidePackets().Tag(PYTHON_SESSION_SIDE_PACKET_TAG).Get<PythonNodeResourcesMap>();
auto it = nodeResourcesMap.find(cc->NodeName());
if (it == nodeResourcesMap.end()) {
LOG(INFO) << "Could not find initialized Python node named: " << cc->NodeName();
RET_CHECK(false);
}
nodeResources = it->second;
outputTimestamp = mediapipe::Timestamp(mediapipe::Timestamp::Unset());
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Open end";
return absl::OkStatus();
}
#define RETURN_EXECUTION_FAILED_STATUS() \
return absl::Status(absl::StatusCode::kInternal, "Error occurred during graph execution")
absl::Status Process(CalculatorContext* cc) final {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Process start";
py::gil_scoped_acquire acquire;
try {
if (generatorInitialized()) {
if (receivedNewData(cc)) {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Node is already processing data. Create new stream for another request.";
return absl::Status(absl::StatusCode::kResourceExhausted, "Node is already processing data. Create new stream for another request.");
}
if (!generatorFinished()) {
generate(cc, outputTimestamp);
} else {
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] finished generating. Resetting the generator.";
resetGenerator();
}
} else {
// If execute yields, first request sets initial timestamp to input timestamp, then each cycle increments it.
// If execute returns, input timestamp is also output timestamp.
outputTimestamp = cc->InputTimestamp();
std::vector<py::object> pyInputs;
prepareInputs(cc, &pyInputs);
py::object executeResult = std::move(nodeResources->ovmsPythonModel->attr("execute")(pyInputs));
handleExecutionResult(cc, std::move(executeResult));
}
} catch (const UnexpectedOutputTensorError& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (const UnexpectedOutputPythonObjectError& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution. Wrong object on execute output: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (const UnexpectedInputPythonObjectError& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution. Wrong object on execute input: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (const BadPythonNodeConfigurationError& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (const pybind11::error_already_set& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (std::exception& e) {
LOG(INFO) << "Error occurred during node " << cc->NodeName() << " execution: " << e.what();
RETURN_EXECUTION_FAILED_STATUS();
} catch (...) {
LOG(INFO) << "Unexpected error occurred during node " << cc->NodeName() << " execution";
RETURN_EXECUTION_FAILED_STATUS();
}
LOG(INFO) << "PythonExecutorCalculator [Node: " << cc->NodeName() << "] Process end";
return absl::OkStatus();
}
};
REGISTER_CALCULATOR(PythonExecutorCalculator);
} // namespace mediapipe