-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathargmax_sum.py
67 lines (60 loc) · 2.79 KB
/
argmax_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#
# Copyright (c) 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow.compat.v1 as tf
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='generate model calculation argmax from 2 inputs')
parser.add_argument('--input_size', type=int, help='input tensor size', dest='input_size', default=10)
parser.add_argument('--export_dir', help='directory to store the model', dest='export_dir', default="/tmp/argmax/1")
args = vars(parser.parse_args())
print(args.get('input_size'))
model_dir = args.get('export_dir')
graph_def = tf.GraphDef()
builder = tf.saved_model.builder.SavedModelBuilder(model_dir)
sigs = {}
with tf.Session(graph=tf.Graph()) as sess:
tf.import_graph_def(graph_def, name="")
input1 = tf.placeholder(tf.float32, [None, args.get('input_size')], name='input1') # defines input shape
input2 = tf.placeholder(tf.float32, [None, args.get('input_size')], name='input2') # defines input shape
sum = tf.add(input1, input2, name='sum') # add 2 inputs
max = tf.argmax(sum,1,name='argmax') # get index with max value
g = tf.get_default_graph()
inp1 = g.get_tensor_by_name("input1:0")
inp2 = g.get_tensor_by_name("input2:0")
m = g.get_tensor_by_name("argmax:0")
sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \
tf.saved_model.signature_def_utils.predict_signature_def(
{"in1": inp1, "in2": inp2}, {"argmax":m})
builder.add_meta_graph_and_variables(sess,[tag_constants.SERVING],signature_def_map=sigs)
builder.save()
# evaluation
with tf.Session(graph=tf.Graph()) as sess:
print("Loading model")
tf.saved_model.loader.load(sess, ["serve"], model_dir, clear_devices=True)
print("Model loaded")
graph = tf.get_default_graph()
input1 = graph.get_tensor_by_name("input1:0")
input2 = graph.get_tensor_by_name("input2:0")
# preds = graph.get_tensor_by_name("output:0")
m = graph.get_tensor_by_name("argmax:0")
data1 = np.ones((1,args.get('input_size')),np.float32)
data2 = np.ones((1,args.get('input_size')),np.float32)
data2[0,3] = 5
feed_dict = {input1: data1, input2: data2}
results = sess.run([m], feed_dict=feed_dict)
print(results)