Person, vehicle, bike detection with multiple data sources {#ovms_demo_person_vehicle_bike_detection}
The purpose of this demo is to show how to send data from multiple sources (cameras, video files) to a model served in OpenVINO Model Server.
Model preparation: Python 3.9 or higher with pip
Model Server deployment: Installed Docker Engine or OVMS binary package according to the baremetal deployment guide
curl --create-dirs https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.bin -o model/1/person-vehicle-bike-detection-crossroad-0078.bin
curl --create-dirs https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/person-vehicle-bike-detection-crossroad-0078/FP32/person-vehicle-bike-detection-crossroad-0078.xml -o model/1/person-vehicle-bike-detection-crossroad-0078.xml
:::{dropdown} Deploying with Docker
chmod -R 755 model
docker run -d -v `pwd`/model:/models -p 9000:9000 openvino/model_server:latest --model_path /models --model_name person-vehicle-detection --port 9000 --shape auto
::: :::{dropdown} Deploying on Bare Metal Assuming you have unpacked model server package, make sure to:
- On Windows: run
setupvars
script - On Linux: set
LD_LIBRARY_PATH
andPATH
environment variables
as mentioned in deployment guide, in every new shell that will start OpenVINO Model Server.
ovms --model_path model --model_name person-vehicle-detection --port 9000 --shape auto
:::
git clone https://github.com/openvinotoolkit/model_server.git
cd model_server/demos/person_vehicle_bike_detection/python
pip3 install -r requirements.txt
python person_vehicle_bike_detection.py --help
Argument | Description |
---|---|
-h,--help | Show help message and exit |
-n NETWORK_NAME, --network_name NETWORK_NAME | Network name |
-l INPUT_LAYER, --input_layer INPUT_LAYER | Input layer name |
-o OUTPUT_LAYER, --output_layer OUTPUT_LAYER | Output layer name |
-d FRAME_SIZE, --frame_size FRAME_SIZE | Input frame width and height that matches used model |
-c NUM_CAMERAS, --num_cameras NUM_CAMERAS | Number of cameras to be used |
-f FILE, --file FILE | Path to the video file |
-i IP, --ip IP | IP address of the ovms |
-p PORT, --port PORT | Port of the ovms |
Copy example video file:
git clone "https://github.com/intel-iot-devkit/sample-videos.git"
Set camera
count to 0
with -c 0
and provide path to the video file with -f
parameter.
python person_vehicle_bike_detection.py -n person-vehicle-detection -l data -o detection_out -d 1024 -c 0 -f sample-videos/person-bicycle-car-detection.mp4 -i localhost -p 9000
Output:
[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video0 fps: 7, Inf fps: 7, dropped fps: 0
Set camera
count to 1
with -c 1
and provide path to the video file with -f
parameter.
python person_vehicle_bike_detection.py -n person-vehicle-detection -l data -o detection_out -d 1024 -c 1 -f sample-videos/person-bicycle-car-detection.mp4 -i localhost -p 9000
Console logs:
[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Video1 fps: 7, Inf fps: 7, dropped fps: 0
[$(levelname)s ] Camera0 fps: 8, Inf fps: 8, dropped fps: 0
NOTE: You should also be seeing the GUI showing the video frame and bounding boxes drawn with the detected class name