-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate_solution_bitacc.py
281 lines (242 loc) · 13 KB
/
evaluate_solution_bitacc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
##############################################################################
# Copyright 2018 - The OPRECOMP Project Consortium,
# IBM Research GmbH. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
# @file evaluate_solution_bitacc.py
# @author Dionysios Diamantopoulos, [email protected]
# @date 15 Oct 2017
# @brief Script for fixed-point exploration for the BLSTM mb Uses the fixed-point
# library of Xilinx Vivado HLS. For a combination of fixed-point format,
# collects accuracy and synthesis results and plots them
import os
import subprocess
import numpy as np
import os.path
import fileinput
from shutil import copyfile
LOAD_SESSION = 1
PLOT_ENABLE = 1
savesessionfile = 'globalsave.npy'
if (LOAD_SESSION == 1):
#dill.load_session(filename)
[labels, confMat, mat_acc_min, mat_acc_max, [total_bits, frac_bits], mat_brams, mat_dsps, mat_ffs, mat_luts] = np.load(savesessionfile)
else:
RUN_SIM = 1
RUN_VHLS = 0
filein = "./include/common_def.h"
fileout = "./include/common_def_replaced.h"
log_file_path = "/tmp/run.log"
syn_log = "./hw/hlsBLSTM_xcku060-ffva1156-2-e/blstm/syn/report/Single_Kernel_BLSTM_csynth.rpt"
f = open(filein,'r')
filedata = f.read()
f.close()
if (RUN_SIM == 1):
logfd = open("./run.log",'w')
TRIGF_APROX_list = [2]
DTYPE_int_min = 7
DTYPE_int_max = 24
DTYPE_int_step = 1
DTYPE_fra_min = 5
DTYPE_fra_max = 20
#sstring_DTYPE_IMG = "#define DTYPE_IMG"
#rstring_DTYPE_IMG = "#define DTYPE_IMG ap_fixed<"
#sstring_DTYPE_IMG = "#define DTYPE_WEIGHTS"
#rstring_DTYPE_IMG = "#define DTYPE_WEIGHTS ap_fixed<"
#sstring_DTYPE_IMG = "#define DTYPE_IN"
#rstring_DTYPE_IMG = "#define DTYPE_IN ap_fixed<"
sstring_DTYPE_IMG = "#define DTYPE_OUTPUT"
rstring_DTYPE_IMG = "#define DTYPE_OUTPUT ap_fixed<"
#sstring_DTYPE_IMG = "#define DTYPE_LAYERS"
#rstring_DTYPE_IMG = "#define DTYPE_LAYERS ap_fixed<"
#sstring_DTYPE_IMG = "#define DTYPE_TRNLB"
#rstring_DTYPE_IMG = "#define DTYPE_TRNLB ap_fixed<"
#sstring_DTYPE_IMG = "#define COLS_PER_KERNEL_EXEC"
#rstring_DTYPE_IMG = "#define COLS_PER_KERNEL_EXEC "
for tr in TRIGF_APROX_list:
search_string = "TRIGF_APPROX"
replace_string = "TRIGF_APPROX " + str(tr) + " //"
newdata = filedata.replace(search_string, replace_string)
f = open(fileout,'w')
f.write(newdata)
f.close()
confMat = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_acc_min = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_acc_max = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_brams = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_dsps = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_ffs = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
mat_luts = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
labels = np.empty(shape=[0, DTYPE_fra_max-DTYPE_fra_min+1])
bits_vec=[]
for img_b in range(DTYPE_int_min, DTYPE_int_max+1, DTYPE_int_step):
col_accuracy = []
col_accuracy_min = []
col_accuracy_max = []
col_brams = []
col_dsps = []
col_ffs = []
col_luts = []
cols_labels = []
bits_vec.append(img_b)
for img_f in range(DTYPE_fra_min, min(img_b+1, DTYPE_fra_max+1)):
replace_string = rstring_DTYPE_IMG + str(img_b)+","+str(img_f) + ">\n" # form bitwidth
#replace_string = rstring_DTYPE_IMG + str(img_b) + "\n" #for segmentation
fout = open(fileout,'w')
for line in fileinput.input(filein):
if sstring_DTYPE_IMG in line:
line = replace_string
fout.write(line)
fout.close()
copyfile(fileout, filein)
if (RUN_SIM == 1):
command = "cd hw/ && ./compile_gnu.sh && ./main > " + log_file_path + " && cd ../"
subprocess.getoutput(command)
if (not os.path.exists(log_file_path)):
print("log file " + log_file_path + " does not exist, skipping round")
continue
command = "cat " + log_file_path + " | grep Accuracy | tail -n 1 | awk '{print $2}'"
accuracy_min = subprocess.getoutput(command)
command = "cat " + log_file_path + " | grep Accuracy | tail -n 1 | awk '{print $3}'"
accuracy_max = subprocess.getoutput(command)
command = "cat " + log_file_path + " | grep Accuracy | tail -n 1 | awk '{print $4}' | sed 's/.$//'"
accuracy = subprocess.getoutput(command)
command = "cat " + log_file_path + " | grep Measured | awk '{print $4}'"
time = subprocess.getoutput(command)
if (RUN_VHLS == 1):
command = "cd hw/ && vivado_hls -f run_hls_script.tcl && cd ../"
subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Latency | tail -n 6 | head -n 1 | awk '{print $3}' | sed 's/.$//'"
latency_min = subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Latency | tail -n 6 | head -n 1 | awk '{print $4}' | sed 's/.$//'"
latency_max = subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Total | head -n 1 | awk '{print $3}' | sed 's/.$//'"
brams = subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Total | head -n 1 | awk '{print $4}' | sed 's/.$//'"
dsps = subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Total | head -n 1 | awk '{print $5}' | sed 's/.$//'"
ffs = subprocess.getoutput(command)
command = "cat " + syn_log + " | grep -A 3 Total | head -n 1 | awk '{print $6}' | sed 's/.$//'"
luts = subprocess.getoutput(command)
else:
latency_min='0'; latency_max='0'; brams='0'; dsps='0'; ffs='0'; luts='0';
line = "TRIGF_APROX=" + str(tr), str(img_b)+"."+str(img_f), time, accuracy_min, accuracy_max, accuracy, latency_min, latency_max, brams, dsps, ffs, luts
print(', '.join(line))
if (RUN_SIM == 1):
logfd.write(', '.join(line)+"\n")
col_accuracy = np.append(col_accuracy, float(accuracy))
col_accuracy_min = np.append(col_accuracy_min, float(accuracy_min))
col_accuracy_max = np.append(col_accuracy_max, float(accuracy_max))
col_brams = np.append(col_brams, float(brams))
col_dsps = np.append(col_dsps, float(dsps))
col_ffs = np.append(col_ffs, float(ffs))
col_luts = np.append(col_luts, float(luts))
text = "Q%d.%d\n%.2f" % (img_f, img_b-img_f, float(accuracy))
cols_labels = np.append(cols_labels, text )
for i in range(max(img_b+1, DTYPE_fra_min), DTYPE_fra_max+1):
col_accuracy = np.append(col_accuracy, float(0))
col_accuracy_min = np.append(col_accuracy_min, float(0))
col_accuracy_max = np.append(col_accuracy_max, float(0))
col_brams = np.append(col_brams, float(0))
col_dsps = np.append(col_dsps, float(0))
col_ffs = np.append(col_ffs, float(0))
col_luts = np.append(col_luts, float(0))
cols_labels = np.append(cols_labels, "N/A" )
confMat = np.append(confMat, [col_accuracy], axis=0)
mat_acc_min = np.append(mat_acc_min, [col_accuracy_min], axis=0)
mat_acc_max = np.append(mat_acc_max, [col_accuracy_max], axis=0)
mat_brams = np.append(mat_brams, [col_brams], axis=0)
mat_dsps = np.append(mat_dsps, [col_dsps], axis=0)
mat_ffs = np.append(mat_ffs, [col_ffs], axis=0)
mat_luts = np.append(mat_luts, [col_luts], axis=0)
labels = np.append(labels, [cols_labels], axis=0)
if (RUN_VHLS == 1):
logfd.close()
total_bits = np.arange(DTYPE_int_min, DTYPE_int_max+1, DTYPE_int_step)
frac_bits = np.arange(DTYPE_fra_min, DTYPE_fra_max+1)
# Saving the objects:
if (LOAD_SESSION == 0):
np.save(savesessionfile, [labels, confMat, mat_acc_min, mat_acc_max, [total_bits, frac_bits], mat_brams, mat_dsps, mat_ffs, mat_luts])
if PLOT_ENABLE == 1:
import seaborn as sns
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Plot for segmentation eperimentation
#x = total_bits
#y = confMat[:,0]
#yerr = [y-mat_acc_min[:,0], mat_acc_max[:,0]-y]
#fig = plt.figure()
#plt.axvline(x=22, color='m', linestyle='--', label="Max columns for PULP cache")
#plt.axvline(x=732, color='c', linestyle='--', label="Max columns on dataset")
#plt.axhline(y=100, color='g', linestyle='--', label="Groundtruth Max Accuracy")
#plt.axhline(y=98.2337, color='r', linestyle='--', label="Groundtruth Average Accuracy")
#plt.axhline(y=57.8947, color='b', linestyle='--', label="Groundtruth Min Accuracy")
#plt.errorbar(x, y, yerr=yerr, fmt='--o', label="Measured Accuracy (Min-Avg-Max)")
#fig.suptitle('Columns spliting impact on contemporal information lost ')
#plt.xlabel('Columns splitting size')
#plt.ylabel('Accuracy (%)')
#plt.legend(loc='lower center')
#plt.gca().invert_xaxis()
#plt.ylim((0,110))
# Draw a heatmap with the numeric values in each cell
# Generate a mask for the upper triangle
mask = np.zeros_like(confMat, dtype=np.bool)
mask[np.triu_indices_from(mask, k=4)] = True
f, ax = plt.subplots(figsize=(7, 5))
cmap = 'viridis'
print(labels)
ax = sns.heatmap(confMat, cmap=cmap, mask=mask, fmt='', annot_kws={"size": 8}, annot=labels,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, ax=ax, vmin=0, vmax=100)
ax.set_yticklabels(total_bits, rotation=0)
ax.set_xticklabels(frac_bits, rotation=0)
ax.set(ylabel='Total bits', xlabel='Integer bits')
ax.set_title('Output bitwdith prercision vs accuracy')
# set up a figure twice as wide as it is tall
fig = plt.figure(figsize=plt.figaspect(0.5))
#===============
# First subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 1, projection='3d')
X = frac_bits
Y = total_bits
X, Y = np.meshgrid(X, Y)
surf = ax.plot_surface(X, Y, mat_brams, rstride=1, cstride=1, cmap=cmap,
linewidth=0, antialiased=False)
ax.set_xlabel('Fractional bits'); ax.set_ylabel('Total bits'); ax.set_zlabel('BRAMs')
#===============
# Second subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 2, projection='3d')
surf = ax.plot_surface(X, Y, mat_dsps, rstride=1, cstride=1, cmap=cmap,
linewidth=0, antialiased=False)
ax.set_xlabel('Fractional bits'); ax.set_ylabel('Total bits'); ax.set_zlabel('DSPs')
#===============
# Third subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 3, projection='3d')
surf = ax.plot_surface(X, Y, mat_ffs, rstride=1, cstride=1, cmap=cmap,
linewidth=0, antialiased=False)
ax.set_xlabel('Fractional bits'); ax.set_ylabel('Total bits'); ax.set_zlabel('FFs')
#===============
# Forth subplot
#===============
# set up the axes for the first plot
ax = fig.add_subplot(2, 2, 4, projection='3d')
surf = ax.plot_surface(X, Y, mat_luts, rstride=1, cstride=1, cmap=cmap,
linewidth=0, antialiased=False)
ax.set_xlabel('Fractional bits'); ax.set_ylabel('Total bits'); ax.set_zlabel('LUTs')
plt.show()