forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
45 lines (32 loc) · 1.27 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Model evaluation"""
from megatron.training import get_args
from megatron.training import print_rank_0
from tasks.msdp.metrics import F1Metric
from tqdm import tqdm
def evaluate_f1(guess_file, answer_file):
"""Evaluating F1 Score"""
guess_list = []
print_rank_0('reading %s' % guess_file)
with open(guess_file, "r") as f:
for i, line in enumerate(tqdm(f)):
line = line.strip()
if "<|endoftext|>" in line:
line = line.replace("<|endoftext|>", "")
guess_list.append(line)
answer_list = []
print_rank_0('reading %s' % answer_file)
with open(answer_file, "r") as f:
for i, line in enumerate(tqdm(f)):
line = line.strip()
if line == "no_passages_used":
line = ""
answer_list.append(line)
assert len(guess_list) == len(answer_list), \
"lengths of guess and answer are different!"
precision, recall, f1 = F1Metric.compute_all_pairs(guess_list, answer_list)
print_rank_0('Precision: %.4f; recall: %.4f; f1: %.4f' % (precision, recall, f1))
print_rank_0('done :-)')
def main():
args = get_args()
evaluate_f1(args.guess_file, args.answer_file)