1
+ '''
2
+ Descripttion:
3
+ Version: 1.0
4
+ Author: ZhangHongYu
5
+ Date: 2021-05-22 21:53:43
6
+ LastEditors: ZhangHongYu
7
+ LastEditTime: 2021-05-29 21:01:44
8
+ '''
9
+ import numpy as np
10
+ from copy import deepcopy
11
+ eps = 1e-6
12
+ # 消去步骤
13
+ def LU_decomposition (A ): #假设A是方阵,A.shape[0] == A.shape[1], python中变量是传拷贝,数组等对象是传引用
14
+ assert (A .shape [0 ] == A .shape [1 ])
15
+ U = deepcopy (A )
16
+ L = np .zeros (A .shape , dtype = np .float32 )
17
+ for j in range (U .shape [1 ]): #消去第j列的数
18
+ # abs(U[j ,j])为要消去的主元
19
+ if abs (U [j , j ]) < eps :
20
+ raise ValueError ("zero pivot encountered!" ) #无法解决零主元问题
21
+ return
22
+ L [j , j ] = 1
23
+ # 消去主对角线以下的元素A[i, j]
24
+ for i in range (j + 1 , U .shape [0 ]):
25
+ mult_coeff = U [i , j ]/ U [j , j ]
26
+ L [i , j ] = mult_coeff
27
+ # 对这A中这一行都进行更新
28
+ for k in range (j , U .shape [1 ]):
29
+ U [i , k ] = U [i , k ] - mult_coeff * U [j , k ]
30
+
31
+ return L , U
32
+
33
+ #常规的上三角进行回代(此例中对角线不为0)
34
+ def gaussion_putback_U (A , b ):
35
+ x = np .zeros ((A .shape [0 ], 1 ))
36
+ for i in reversed (range (A .shape [0 ])): #算出第i个未知数
37
+ for j in range (i + 1 , A .shape [1 ]):
38
+ b [i ] = b [i ] - A [i , j ] * x [j ]
39
+ x [i ] = b [i ] / A [i , i ]
40
+ return x
41
+
42
+ #下三角进行回代(此例中对角线不为0)
43
+ def gaussion_putback_L (A , b ):
44
+ x = np .zeros ((A .shape [0 ], 1 ))
45
+ for i in range (A .shape [0 ]): #算出第i个未知数
46
+ for j in range (i ):
47
+ b [i ] = b [i ] - A [i , j ] * x [j ]
48
+ #草,如果b矩阵初始化时是整形,3-6.99999976 = ceil(-3.99999) = -3,
49
+ # 直接给我向上取整(截断)约成整数了
50
+ # if i == A.shape[0] - 1:
51
+ # print(A[i, j], "----", x[j], "----", A[i, j]*x[j])
52
+ # print(b[i])
53
+ x [i ] = b [i ] / A [i , i ]
54
+ return x
55
+
56
+ def LU_putback (L , U , b ):
57
+ # Ax = b => LUx = b ,令Ux = c
58
+ # 解 Lc = b
59
+ c = gaussion_putback_L (L , b ) #上三角回代
60
+ print (c )
61
+ # 再解 Ux = c
62
+ x = gaussion_putback_U (U , c ) #下三角回代
63
+ return x
64
+
65
+ if __name__ == '__main__' :
66
+ A = np .array (
67
+ [
68
+ [1 , 2 , - 1 ],
69
+ [2 , 1 , - 2 ],
70
+ [- 3 , 1 , 1 ]
71
+ ],
72
+ dtype = np .float32
73
+ )
74
+ b = np .array (
75
+ [
76
+ [3 ],
77
+ [3 ],
78
+ [- 6 ]
79
+ ],
80
+ dtype = np .float32 #注意,此处必须是浮点型,否则整形的话后面就自动舍入了
81
+ )
82
+ # 单纯的LU分解过程不会对b有影响
83
+ # 即消元与回代分离
84
+
85
+ # 分解步骤
86
+ L , U = LU_decomposition (A ) # A=LU
87
+ print (L )
88
+ print (U )
89
+ # 回代步骤
90
+ x = LU_putback (L , U , b )
91
+ print (x )
92
+ #print(A, "\n", b)
0 commit comments