Skip to content

Commit 81b4bb7

Browse files
author
lonelyprince7
committed
init
0 parents  commit 81b4bb7

32 files changed

+1228
-0
lines changed

.vscode/launch.json

+15
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,15 @@
1+
{
2+
// 使用 IntelliSense 了解相关属性。
3+
// 悬停以查看现有属性的描述。
4+
// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387
5+
"version": "0.2.0",
6+
"configurations": [
7+
{
8+
"name": "Python: 当前文件",
9+
"type": "python",
10+
"request": "launch",
11+
"program": "${file}",
12+
"console": "integratedTerminal"
13+
}
14+
]
15+
}

LICENSE

+21
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
MIT License
2+
3+
Copyright (c) 2021 HongYu Zhang
4+
5+
Permission is hereby granted, free of charge, to any person obtaining a copy
6+
of this software and associated documentation files (the "Software"), to deal
7+
in the Software without restriction, including without limitation the rights
8+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9+
copies of the Software, and to permit persons to whom the Software is
10+
furnished to do so, subject to the following conditions:
11+
12+
The above copyright notice and this permission notice shall be included in all
13+
copies or substantial portions of the Software.
14+
15+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21+
SOFTWARE.

README.md

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
# 《数值分析》
2+
3+
用Python+Numpy+Pytorch实现《数值分析》(Timothy Sauer著)的所有算法
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
'''
2+
Descripttion: horn法则多项式求值
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-07 11:40:20
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-03-07 11:59:29
8+
'''
9+
import numpy as np
10+
11+
def poly(order, coeff, x, basis):
12+
if basis is None:
13+
basis = np.zeros((order,), dtype=np.float32)
14+
# 初始递推值
15+
y = coeff[-1]
16+
for i in reversed(range(order)):
17+
y = y * (x - basis[i]) + coeff[i]
18+
return y
19+
20+
if __name__ == '__main__':
21+
# 令所有基点为0的普通多项式
22+
res1 = poly(4, np.array([-1, 5,-3, 3, 2]), 1/2, np.array([0, 0, 0, 0]))
23+
print(res1)
24+
# 基点不为0的三阶插值多项式
25+
res2 = poly(3, np.array([1, 1/2, 1/2, -1/2]), 1, [0, 2, 3])
26+
print(res2)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-08 15:13:40
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-03-08 15:21:11
8+
'''
9+
import numpy as np
10+
import math
11+
def fpi(g, x0 ,k): #迭代k次,包括x0在内共k+1个数
12+
x = np.zeros(k+1,)
13+
x[0] = x0
14+
for i in range(1, k+1):
15+
x[i] = g(x[i-1])
16+
return x[k]
17+
if __name__ == '__main__':
18+
res = fpi(lambda x: math.cos(x), 0, 10)
19+
print(res)

chapter1.求解方程根/二分法.py

+25
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-08 14:48:29
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-03-08 15:01:59
8+
'''
9+
import numpy as np
10+
import math
11+
def binary(f, a, b, tol):
12+
if f(a)*f(b) >=0 :
13+
raise ValueError("f(a)*f(b)<0 not satisfied!")
14+
while (b-a)/2 > tol:
15+
c=(a+b)/2 # 即使a和b是int,此处c自动转float了
16+
if f(c) == 0: #c是一个解,完成
17+
break
18+
if f(a)*f(c)<0 :
19+
b = c
20+
else:
21+
a = c
22+
return (a+b)/2
23+
if __name__ == '__main__':
24+
res = binary(lambda x: x**3+x-1, 0, 1, 5*pow(10, -5))
25+
print(res)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-08 16:41:50
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-06-06 20:51:56
8+
'''
9+
import torch
10+
#这里我们对w,b求梯度,事实上只要requires_grad=True,我们也可以对x,y求梯度
11+
x = torch.ones(5) # input tensor
12+
y = torch.zeros(3) # expected output
13+
w = torch.randn(5, 3, requires_grad=True)
14+
b = torch.randn(3, requires_grad=True)
15+
z = torch.matmul(x, w)+b
16+
# print(z)
17+
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
18+
print(loss) # loss是一个标量tensor(3.2646),只有这样才可反向传播
19+
loss.backward()
20+
print(w.grad,'\n', b.grad)
21+
print(w.grad!=None)
+22
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-06-06 21:48:48
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-06-06 21:58:20
8+
'''
9+
import torch
10+
a = torch.tensor([2., 3.], requires_grad=True)
11+
b = torch.tensor([6., 4.], requires_grad=True)
12+
Q = 3*a**3 - b**2
13+
external_grad = torch.tensor([1., 1.])
14+
Q.backward(gradient=external_grad)
15+
a.grad.zero_()
16+
b.grad.zero_()
17+
with torch.no_grad():
18+
a += 1
19+
Q = 5*a*b
20+
Q.backward(gradient=external_grad)
21+
print(a.grad)
22+
print(b.grad)

chapter1.求解方程根/牛顿法.py

+37
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,37 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-08 15:57:56
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-06-06 22:17:31
8+
'''
9+
import numpy as np
10+
import math
11+
import torch
12+
#x.grad为Dy/dx(假设Dy为最后一个节点)
13+
def newton(x0, k, f): #迭代k次,包括x0在内共k+1个数
14+
# 初始化计算图参数
15+
x = torch.tensor([x0], requires_grad=True)
16+
for i in range(1, k+1):
17+
# 每次迭代都要调用函数前向传播一次并重新求梯度,类似于网络训练,然后更新变量(这里是x)
18+
# 前向传播,注意x要用新的对象,否则后面y.backgrad后会释放
19+
y = f(x)
20+
# 因为调用backward的对象自身不算梯度,相当于d y /dy = 1->sy.grad其实还是None?
21+
# 或者令loss=y.sum() loss.backward()
22+
# y.backward(gradient = torch.tensor([1.0]))
23+
y.backward() # y.grad是None
24+
# 更新参数
25+
# 注意此处必须调用x.add原地修改,否则会生成一份copy,调用.grad得None
26+
# 修改式需关闭求导,否则会对leaf变量就地修改未定义行为(修改是计算图的一部分?)
27+
with torch.no_grad():
28+
x.sub_(torch.divide(y, x.grad))
29+
x.grad.zero_() # 清空梯度,使下一轮建立新的计算图,否则因为backward释放资源下一轮再backward出错
30+
#注意x.grad不能是0,否则要出错使g(x)/x.grad变为none
31+
# 这里g(x)为cos(x)就不行,这样在x=0 时, -sin0=0,故x.grad = 0
32+
return x.detach().numpy()[0]
33+
if __name__ == '__main__':
34+
f = lambda x: x**3 + x - 1
35+
x0 = 1.0
36+
res = newton(x0, 10, f)
37+
print(res)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-05-22 21:43:41
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-05-22 21:45:24
8+
'''
9+
#暴力计算ATA,然后求AT和A的特征值
10+
11+
12+
13+
14+
#计算B=[0 AT;A 0]的特征值和特征向量
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
'''
2+
Descripttion: 朴素法无法解决零主元和高斯消元问题,高斯消元都考虑方非奇异阵(肯定是方的)
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-03-08 17:26:11
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-05-29 16:22:24
8+
'''
9+
import numpy as np
10+
eps = 1e-6
11+
# 消去步骤
12+
def gaussion_elimination(A, b): #假设A是方阵,A.shape[0] == A.shape[1], python中变量是传拷贝,数组等对象是传引用
13+
assert(A.shape[0] == A.shape[1])
14+
for j in range(A.shape[1]): #消去第j列的数
15+
# abs(A[j ,j])为要消去的主元
16+
if abs(A[j, j]) < eps:
17+
raise ValueError("zero pivot encountered!") #无法解决零主元问题
18+
return
19+
# 消去主对角线以下的元素A[i, j]
20+
for i in range(j+1, A.shape[0]):
21+
mult_coeff = A[i, j]/A[j, j]
22+
# 对这A中这一行都进行更新
23+
for k in range(j, A.shape[1]):
24+
A[i, k] = A[i, k] - mult_coeff * A[j, k]
25+
b[i] = b[i] - mult_coeff * b[j] #二维的b取单dim1的索引即[1]这种含单个元素的列表
26+
27+
def gaussion_putback(A, b):
28+
x = np.zeros((A.shape[0], 1))
29+
for i in reversed(range(A.shape[0])): #算出第i个未知数
30+
for j in range(i+1, A.shape[1]):
31+
b[i] = b[i] - A[i, j] * x[j]
32+
x[i] = b[i] / A[i, i]
33+
return x
34+
35+
if __name__ == '__main__':
36+
A = np.array(
37+
[
38+
[1, 2, -1],
39+
[2, 1, -2],
40+
[-3, 1, 1]
41+
]
42+
)
43+
b = np.array(
44+
[
45+
[3],
46+
[3],
47+
[-6]
48+
]
49+
)
50+
gaussion_elimination(A, b)
51+
x = gaussion_putback(A, b)
52+
print(x)
53+
#print(A, "\n", b)
54+
55+
56+
57+
58+
59+
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,92 @@
1+
'''
2+
Descripttion:
3+
Version: 1.0
4+
Author: ZhangHongYu
5+
Date: 2021-05-22 21:53:43
6+
LastEditors: ZhangHongYu
7+
LastEditTime: 2021-05-29 21:01:44
8+
'''
9+
import numpy as np
10+
from copy import deepcopy
11+
eps = 1e-6
12+
# 消去步骤
13+
def LU_decomposition(A): #假设A是方阵,A.shape[0] == A.shape[1], python中变量是传拷贝,数组等对象是传引用
14+
assert(A.shape[0] == A.shape[1])
15+
U = deepcopy(A)
16+
L = np.zeros(A.shape, dtype=np.float32)
17+
for j in range(U.shape[1]): #消去第j列的数
18+
# abs(U[j ,j])为要消去的主元
19+
if abs(U[j, j]) < eps:
20+
raise ValueError("zero pivot encountered!") #无法解决零主元问题
21+
return
22+
L[j, j] = 1
23+
# 消去主对角线以下的元素A[i, j]
24+
for i in range(j+1, U.shape[0]):
25+
mult_coeff = U[i, j]/U[j, j]
26+
L[i, j] = mult_coeff
27+
# 对这A中这一行都进行更新
28+
for k in range(j, U.shape[1]):
29+
U[i, k] = U[i, k] - mult_coeff * U[j, k]
30+
31+
return L, U
32+
33+
#常规的上三角进行回代(此例中对角线不为0)
34+
def gaussion_putback_U(A, b):
35+
x = np.zeros((A.shape[0], 1))
36+
for i in reversed(range(A.shape[0])): #算出第i个未知数
37+
for j in range(i+1, A.shape[1]):
38+
b[i] = b[i] - A[i, j] * x[j]
39+
x[i] = b[i] / A[i, i]
40+
return x
41+
42+
#下三角进行回代(此例中对角线不为0)
43+
def gaussion_putback_L(A, b):
44+
x = np.zeros((A.shape[0], 1))
45+
for i in range(A.shape[0]): #算出第i个未知数
46+
for j in range(i):
47+
b[i] = b[i] - A[i, j] * x[j]
48+
#草,如果b矩阵初始化时是整形,3-6.99999976 = ceil(-3.99999) = -3,
49+
# 直接给我向上取整(截断)约成整数了
50+
# if i == A.shape[0] - 1:
51+
# print(A[i, j], "----", x[j], "----", A[i, j]*x[j])
52+
# print(b[i])
53+
x[i] = b[i] / A[i, i]
54+
return x
55+
56+
def LU_putback(L, U, b):
57+
# Ax = b => LUx = b ,令Ux = c
58+
# 解 Lc = b
59+
c = gaussion_putback_L(L, b) #上三角回代
60+
print(c)
61+
# 再解 Ux = c
62+
x = gaussion_putback_U(U, c) #下三角回代
63+
return x
64+
65+
if __name__ == '__main__':
66+
A = np.array(
67+
[
68+
[1, 2, -1],
69+
[2, 1, -2],
70+
[-3, 1, 1]
71+
],
72+
dtype=np.float32
73+
)
74+
b = np.array(
75+
[
76+
[3],
77+
[3],
78+
[-6]
79+
],
80+
dtype=np.float32 #注意,此处必须是浮点型,否则整形的话后面就自动舍入了
81+
)
82+
# 单纯的LU分解过程不会对b有影响
83+
# 即消元与回代分离
84+
85+
# 分解步骤
86+
L, U = LU_decomposition(A) # A=LU
87+
print(L)
88+
print(U)
89+
# 回代步骤
90+
x = LU_putback(L, U, b)
91+
print(x)
92+
#print(A, "\n", b)

0 commit comments

Comments
 (0)