forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTypeCheckError.cpp
1472 lines (1239 loc) · 47.7 KB
/
TypeCheckError.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- TypeCheckError.cpp - Type Checking for Error Coverage ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis to ensure that errors are
// caught.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Attr.h"
using namespace swift;
namespace {
/// A function reference.
class AbstractFunction {
public:
enum Kind : uint8_t {
Opaque, Function, Closure, Parameter,
};
private:
union {
AbstractFunctionDecl *TheFunction;
AbstractClosureExpr *TheClosure;
ParamDecl *TheParameter;
Expr *TheExpr;
};
unsigned TheKind : 2;
unsigned IsRethrows : 1;
unsigned IsProtocolMethod : 1;
unsigned ParamCount : 28;
public:
explicit AbstractFunction(Kind kind, Expr *fn)
: TheKind(kind),
IsRethrows(false),
IsProtocolMethod(false),
ParamCount(1) {
TheExpr = fn;
}
explicit AbstractFunction(AbstractFunctionDecl *fn,
bool isProtocolMethod)
: TheKind(Kind::Function),
IsRethrows(fn->getAttrs().hasAttribute<RethrowsAttr>()),
IsProtocolMethod(isProtocolMethod),
ParamCount(fn->getNaturalArgumentCount()) {
TheFunction = fn;
}
explicit AbstractFunction(AbstractClosureExpr *closure)
: TheKind(Kind::Closure),
IsRethrows(false),
IsProtocolMethod(false),
ParamCount(closure->getNaturalArgumentCount()) {
TheClosure = closure;
}
explicit AbstractFunction(ParamDecl *parameter)
: TheKind(Kind::Parameter),
IsRethrows(false),
IsProtocolMethod(false),
ParamCount(1) {
TheParameter = parameter;
}
Kind getKind() const { return Kind(TheKind); }
/// Whether the function is marked 'rethrows'.
bool isBodyRethrows() const { return IsRethrows; }
/// The uncurry level that 'rethrows' applies to.
unsigned getNumBodyParameters() const { return ParamCount; }
unsigned getNumArgumentsForFullApply() const {
return (ParamCount - unsigned(IsProtocolMethod));
}
Type getType() const {
switch (getKind()) {
case Kind::Opaque: return getOpaqueFunction()->getType();
case Kind::Function: return getFunction()->getInterfaceType();
case Kind::Closure: return getClosure()->getType();
case Kind::Parameter: return getParameter()->getType();
}
llvm_unreachable("bad kind");
}
bool isAutoClosure() const {
if (getKind() == Kind::Closure)
return isa<AutoClosureExpr>(getClosure());
return false;
}
AbstractFunctionDecl *getFunction() const {
assert(getKind() == Kind::Function);
return TheFunction;
}
AbstractClosureExpr *getClosure() const {
assert(getKind() == Kind::Closure);
return TheClosure;
}
ParamDecl *getParameter() const {
assert(getKind() == Kind::Parameter);
return TheParameter;
}
Expr *getOpaqueFunction() const {
assert(getKind() == Kind::Opaque);
return TheExpr;
}
bool isProtocolMethod() const {
return IsProtocolMethod;
}
static AbstractFunction decomposeApply(ApplyExpr *apply,
SmallVectorImpl<Expr*> &args) {
Expr *fn;
do {
args.push_back(apply->getArg());
fn = apply->getFn()->getValueProvidingExpr();
} while ((apply = dyn_cast<ApplyExpr>(fn)));
return decomposeFunction(fn);
}
static AbstractFunction decomposeFunction(Expr *fn) {
assert(fn->getValueProvidingExpr() == fn);
// Look through function conversions.
while (auto conversion = dyn_cast<FunctionConversionExpr>(fn)) {
fn = conversion->getSubExpr()->getValueProvidingExpr();
}
// Normal function references.
if (auto declRef = dyn_cast<DeclRefExpr>(fn)) {
ValueDecl *decl = declRef->getDecl();
if (auto fn = dyn_cast<AbstractFunctionDecl>(decl)) {
return AbstractFunction(fn, false);
} else if (auto param = dyn_cast<ParamDecl>(decl)) {
return AbstractFunction(param);
}
// Archetype function references.
} else if (auto memberRef = dyn_cast<MemberRefExpr>(fn)) {
if (auto fn = dyn_cast<AbstractFunctionDecl>(
memberRef->getMember().getDecl())) {
return AbstractFunction(fn, true);
}
// Closures.
} else if (auto closure = dyn_cast<AbstractClosureExpr>(fn)) {
return AbstractFunction(closure);
}
// Everything else is opaque.
return AbstractFunction(Kind::Opaque, fn);
}
};
enum ShouldRecurse_t : bool {
ShouldNotRecurse = false, ShouldRecurse = true
};
/// A CRTP ASTWalker implementation that looks for interesting
/// nodes for error handling.
template <class Impl>
class ErrorHandlingWalker : public ASTWalker {
Impl &asImpl() { return *static_cast<Impl*>(this); }
public:
bool walkToDeclPre(Decl *D) override {
// Skip the implementations of all local declarations... except
// PBD. We should really just have a PatternBindingStmt.
return isa<PatternBindingDecl>(D);
}
std::pair<bool, Expr*> walkToExprPre(Expr *E) override {
ShouldRecurse_t recurse = ShouldRecurse;
if (isa<ErrorExpr>(E)) {
asImpl().flagInvalidCode();
} else if (auto closure = dyn_cast<ClosureExpr>(E)) {
recurse = asImpl().checkClosure(closure);
} else if (auto autoclosure = dyn_cast<AutoClosureExpr>(E)) {
recurse = asImpl().checkAutoClosure(autoclosure);
} else if (auto tryExpr = dyn_cast<TryExpr>(E)) {
recurse = asImpl().checkTry(tryExpr);
} else if (auto forceTryExpr = dyn_cast<ForceTryExpr>(E)) {
recurse = asImpl().checkForceTry(forceTryExpr);
} else if (auto optionalTryExpr = dyn_cast<OptionalTryExpr>(E)) {
recurse = asImpl().checkOptionalTry(optionalTryExpr);
} else if (auto apply = dyn_cast<ApplyExpr>(E)) {
recurse = asImpl().checkApply(apply);
}
return {bool(recurse), E};
}
std::pair<bool, Stmt*> walkToStmtPre(Stmt *S) override {
ShouldRecurse_t recurse = ShouldRecurse;
if (auto doCatch = dyn_cast<DoCatchStmt>(S)) {
recurse = asImpl().checkDoCatch(doCatch);
} else if (auto thr = dyn_cast<ThrowStmt>(S)) {
recurse = asImpl().checkThrow(thr);
} else {
assert(!isa<CatchStmt>(S));
}
return {bool(recurse), S};
}
ShouldRecurse_t checkDoCatch(DoCatchStmt *S) {
if (S->isSyntacticallyExhaustive()) {
asImpl().checkExhaustiveDoBody(S);
} else {
asImpl().checkNonExhaustiveDoBody(S);
}
for (auto clause : S->getCatches()) {
asImpl().checkCatch(clause);
}
return ShouldNotRecurse;
}
};
/// A potential reason why something might throw.
class PotentialReason {
public:
enum class Kind : uint8_t {
/// The function throws unconditionally.
Throw,
/// The function calls an unconditionally throwing function.
CallThrows,
/// The function is 'rethrows', and it was passed an explicit
/// argument that was not rethrowing-only in this context.
CallRethrowsWithExplicitThrowingArgument,
/// The function is 'rethrows', and it was passed a default
/// argument that was not rethrowing-only in this context.
CallRethrowsWithDefaultThrowingArgument,
};
private:
Expr *TheExpression;
Kind TheKind;
explicit PotentialReason(Kind kind) : TheKind(kind) {}
public:
static PotentialReason forRethrowsArgument(Expr *E) {
PotentialReason result(Kind::CallRethrowsWithExplicitThrowingArgument);
result.TheExpression = E;
return result;
}
static PotentialReason forDefaultArgument() {
return PotentialReason(Kind::CallRethrowsWithDefaultThrowingArgument);
}
static PotentialReason forThrowingApply() {
return PotentialReason(Kind::CallThrows);
}
static PotentialReason forThrow() {
return PotentialReason(Kind::Throw);
}
Kind getKind() const { return TheKind; }
/// Is this a throw expression?
bool isThrow() const { return getKind() == Kind::Throw; }
bool isRethrowsCall() const {
return (getKind() == Kind::CallRethrowsWithExplicitThrowingArgument ||
getKind() == Kind::CallRethrowsWithDefaultThrowingArgument);
}
/// If this was built with forRethrowsArgument, return the expression.
Expr *getThrowingArgument() const {
assert(getKind() == Kind::CallRethrowsWithExplicitThrowingArgument);
return TheExpression;
}
};
enum class ThrowingKind {
/// The call/function can't throw.
None,
/// The call/function contains invalid code.
Invalid,
/// The call/function can only throw if one of the parameters in
/// the current rethrows context can throw.
RethrowingOnly,
/// The call/function can throw.
Throws,
};
/// A type expressing the result of classifying whether an call or function
/// throws.
class Classification {
ThrowingKind Result;
Optional<PotentialReason> Reason;
public:
Classification() : Result(ThrowingKind::None) {}
explicit Classification(ThrowingKind result, PotentialReason reason)
: Result(result) {
if (result == ThrowingKind::Throws ||
result == ThrowingKind::RethrowingOnly) {
Reason = reason;
}
}
/// Return a classification saying that there's an unconditional
/// throw site.
static Classification forThrow(PotentialReason reason) {
Classification result;
result.Result = ThrowingKind::Throws;
result.Reason = reason;
return result;
}
static Classification forInvalidCode() {
Classification result;
result.Result = ThrowingKind::Invalid;
return result;
}
static Classification forRethrowingOnly(PotentialReason reason) {
Classification result;
result.Result = ThrowingKind::RethrowingOnly;
result.Reason = reason;
return result;
}
void merge(Classification other) {
if (other.getResult() > getResult()) {
*this = other;
}
}
ThrowingKind getResult() const { return Result; }
PotentialReason getThrowsReason() const {
assert(getResult() == ThrowingKind::Throws ||
getResult() == ThrowingKind::RethrowingOnly);
return *Reason;
}
};
/// Given the type of a function, classify whether calling it with the
/// given number of arguments would throw.
static ThrowingKind
classifyFunctionByType(Type type, unsigned numArgs) {
if (!type) return ThrowingKind::Invalid;
assert(numArgs > 0);
while (true) {
auto fnType = type->getAs<AnyFunctionType>();
if (!fnType) return ThrowingKind::Invalid;
if (--numArgs == 0) {
return fnType->getExtInfo().throws()
? ThrowingKind::Throws : ThrowingKind::None;
}
type = fnType->getResult();
}
}
template <class T>
static ThrowingKind classifyFunctionBodyWithoutContext(T *fn) {
return classifyFunctionByType(fn->getType(), fn->getNaturalArgumentCount());
}
/// A class for collecting information about rethrowing functions.
class ApplyClassifier {
llvm::DenseMap<void*, ThrowingKind> Cache;
public:
DeclContext *RethrowsDC = nullptr;
bool inRethrowsContext() const { return RethrowsDC != nullptr; }
/// Check to see if the given function application throws.
Classification classifyApply(ApplyExpr *E) {
// An apply expression is a potential throw site if the function throws.
// But if the expression didn't type-check, suppress diagnostics.
if (!E->getType() || E->getType()->is<ErrorType>())
return Classification::forInvalidCode();
auto type = E->getFn()->getType();
if (!type) return Classification::forInvalidCode();
auto fnType = type->getAs<AnyFunctionType>();
if (!fnType) return Classification::forInvalidCode();
// If the function doesn't throw at all, we're done here.
if (!fnType->throws()) return Classification();
// Decompose the application.
SmallVector<Expr*, 4> args;
auto fnRef = AbstractFunction::decomposeApply(E, args);
// If we're applying more arguments than the natural argument
// count, then this is a call to the opaque value returned from
// the function.
if (args.size() != fnRef.getNumArgumentsForFullApply()) {
assert(args.size() > fnRef.getNumArgumentsForFullApply() &&
"partial application was throwing?");
return Classification::forThrow(PotentialReason::forThrowingApply());
}
// If the function's body is 'rethrows' for the number of
// arguments we gave it, apply the rethrows logic.
if (fnRef.isBodyRethrows()) {
// We need to walk the original parameter types in parallel
// because it only counts for 'rethrows' purposes if it lines up
// with a throwing function parameter in the original type.
Type type = fnRef.getType();
if (!type) return Classification::forInvalidCode();
if (fnRef.isProtocolMethod()) {
if (auto fnType = type->getAs<AnyFunctionType>()) {
type = fnType->getResult();
} else {
Classification::forInvalidCode();
}
}
// Use the most significant result from the arguments.
Classification result;
for (auto arg : reversed(args)) {
auto fnType = type->getAs<AnyFunctionType>();
if (!fnType) return Classification::forInvalidCode();
result.merge(classifyRethrowsArgument(arg, fnType->getInput()));
type = fnType->getResult();
}
return result;
}
// Try to classify the implementation of functions that we have
// local knowledge of.
Classification result =
classifyThrowingFunctionBody(fnRef, PotentialReason::forThrowingApply());
assert(result.getResult() != ThrowingKind::None &&
"body classification decided function was no-throw");
return result;
}
private:
/// Classify a throwing function according to our local knowledge of
/// its implementation.
///
/// For the most part, this only distinguishes between Throws and
/// RethrowingOnly. But it can return Invalid if a type-checking
/// failure prevents it from deciding that, and it can return None
/// if the function is an autoclosure that simply doesn't throw at all.
Classification
classifyThrowingFunctionBody(const AbstractFunction &fn,
PotentialReason reason) {
// If we're not checking a 'rethrows' context, we don't need to
// distinguish between 'throws' and 'rethrows'. But don't even
// trust 'throws' for autoclosures.
if (!inRethrowsContext() && !fn.isAutoClosure())
return Classification::forThrow(reason);
switch (fn.getKind()) {
case AbstractFunction::Opaque:
return Classification::forThrow(reason);
case AbstractFunction::Parameter:
return classifyThrowingParameterBody(fn.getParameter(), reason);
case AbstractFunction::Function:
return classifyThrowingFunctionBody(fn.getFunction(), reason);
case AbstractFunction::Closure:
return classifyThrowingFunctionBody(fn.getClosure(), reason);
}
llvm_unreachable("bad abstract function kind");
}
Classification classifyThrowingParameterBody(ParamDecl *param,
PotentialReason reason) {
assert(param->getType()->castTo<AnyFunctionType>()->throws());
// If we're currently doing rethrows-checking on the body of the
// function which declares the parameter, it's rethrowing-only.
if (param->getDeclContext() == RethrowsDC)
return Classification::forRethrowingOnly(reason);
// Otherwise, it throws unconditionally.
return Classification::forThrow(reason);
}
bool isLocallyDefinedInRethrowsContext(DeclContext *DC) {
while (true) {
assert(DC->isLocalContext());
if (DC == RethrowsDC) return true;
DC = DC->getParent();
if (!DC->isLocalContext()) return false;
}
}
Classification classifyThrowingFunctionBody(AbstractFunctionDecl *fn,
PotentialReason reason) {
// Functions can't be rethrowing-only unless they're defined
// within the rethrows context.
if (!isLocallyDefinedInRethrowsContext(fn) || !fn->hasBody())
return Classification::forThrow(reason);
auto kind = classifyThrowingFunctionBodyImpl(fn, fn->getBody(),
/*allowNone*/ false);
return Classification(kind, reason);
}
Classification classifyThrowingFunctionBody(AbstractClosureExpr *closure,
PotentialReason reason) {
bool isAutoClosure = isa<AutoClosureExpr>(closure);
// Closures can't be rethrowing-only unless they're defined
// within the rethrows context.
if (!isAutoClosure && !isLocallyDefinedInRethrowsContext(closure))
return Classification::forThrow(reason);
BraceStmt *body;
if (auto autoclosure = dyn_cast<AutoClosureExpr>(closure)) {
body = autoclosure->getBody();
} else {
body = cast<ClosureExpr>(closure)->getBody();
}
if (!body) return Classification::forInvalidCode();
auto kind = classifyThrowingFunctionBodyImpl(closure, body,
/*allowNone*/ isAutoClosure);
return Classification(kind, reason);
}
class FunctionBodyClassifier
: public ErrorHandlingWalker<FunctionBodyClassifier> {
ApplyClassifier &Self;
public:
ThrowingKind Result = ThrowingKind::None;
FunctionBodyClassifier(ApplyClassifier &self) : Self(self) {}
void flagInvalidCode() {
Result = std::max(Result, ThrowingKind::Invalid);
}
ShouldRecurse_t checkClosure(ClosureExpr *closure) {
return ShouldNotRecurse;
}
ShouldRecurse_t checkAutoClosure(AutoClosureExpr *closure) {
return ShouldNotRecurse;
}
ShouldRecurse_t checkTry(TryExpr *E) {
return ShouldRecurse;
}
ShouldRecurse_t checkForceTry(ForceTryExpr *E) {
return ShouldNotRecurse;
}
ShouldRecurse_t checkOptionalTry(OptionalTryExpr *E) {
return ShouldNotRecurse;
}
ShouldRecurse_t checkApply(ApplyExpr *E) {
Result = std::max(Result, Self.classifyApply(E).getResult());
return ShouldRecurse;
}
ShouldRecurse_t checkThrow(ThrowStmt *E) {
Result = ThrowingKind::Throws;
return ShouldRecurse;
}
void checkExhaustiveDoBody(DoCatchStmt *S) {}
void checkNonExhaustiveDoBody(DoCatchStmt *S) {
S->getBody()->walk(*this);
}
void checkCatch(CatchStmt *S) {
S->getBody()->walk(*this);
}
};
ThrowingKind classifyThrowingFunctionBodyImpl(void *key, BraceStmt *body,
bool allowNone) {
// Look for the key in the cache.
auto existingIter = Cache.find(key);
if (existingIter != Cache.end())
return existingIter->second;
// For the purposes of finding a fixed point, consider the
// function to be rethrowing-only within its body. Autoclosures
// aren't recursively referenceable, so their special treatment
// isn't a problem for this.
Cache.insert({key, ThrowingKind::RethrowingOnly});
// Walk the body.
ThrowingKind result; {
FunctionBodyClassifier classifier(*this);
body->walk(classifier);
result = classifier.Result;
}
// The body result cannot be 'none' unless it's an autoclosure.
if (!allowNone) {
result = ThrowingKind::RethrowingOnly;
}
// Remember the result.
Cache[key] = result;
return result;
}
/// Classify an argument being passed to a rethrows function.
Classification classifyRethrowsArgument(Expr *arg, Type paramType) {
arg = arg->getValueProvidingExpr();
// If the parameter was a tuple, try to look through the various
// tuple operations.
if (auto paramTupleType = paramType->getAs<TupleType>()) {
if (auto tuple = dyn_cast<TupleExpr>(arg)) {
return classifyTupleRethrowsArgument(tuple, paramTupleType);
} else if (auto shuffle = dyn_cast<TupleShuffleExpr>(arg)) {
return classifyShuffleRethrowsArgument(shuffle, paramTupleType);
}
// Otherwise, we're passing an opaque tuple expression, and we
// should treat it as contributing to 'rethrows' if the original
// parameter type included a throwing function type.
return classifyArgumentByType(paramType,
PotentialReason::forRethrowsArgument(arg));
}
// Otherwise, if the original parameter type was not a throwing
// function type, it does not contribute to 'rethrows'.
auto paramFnType = paramType->getAs<AnyFunctionType>();
if (!paramFnType || !paramFnType->throws())
return Classification();
PotentialReason reason = PotentialReason::forRethrowsArgument(arg);
// TODO: partial applications?
// Decompose the function reference, then consider the type
// of the decomposed function.
AbstractFunction fn = AbstractFunction::decomposeFunction(arg);
// If it doesn't have function type, we must have invalid code.
Type argType = fn.getType();
auto argFnType = (argType ? argType->getAs<AnyFunctionType>() : nullptr);
if (!argFnType) return Classification::forInvalidCode();
// If it doesn't throw, this argument does not cause the call to throw.
if (!argFnType->throws()) return Classification();
// Otherwise, classify the function implementation.
return classifyThrowingFunctionBody(fn, reason);
}
/// Classify an argument to a 'rethrows' function that's a tuple literal.
Classification classifyTupleRethrowsArgument(TupleExpr *tuple,
TupleType *paramTupleType) {
if (paramTupleType->getNumElements() != tuple->getNumElements())
return Classification::forInvalidCode();
Classification result;
for (unsigned i : indices(tuple->getElements())) {
result.merge(classifyRethrowsArgument(tuple->getElement(i),
paramTupleType->getElementType(i)));
}
return result;
}
/// Classify an argument to a 'rethrows' function that's a tuple shuffle.
Classification classifyShuffleRethrowsArgument(TupleShuffleExpr *shuffle,
TupleType *paramTupleType) {
auto reversedParamType =
reverseShuffleParamType(shuffle, paramTupleType);
// Classify the operand.
auto result = classifyRethrowsArgument(shuffle->getSubExpr(),
reversedParamType);
// Check for default arguments in the shuffle.
for (auto i : indices(shuffle->getElementMapping())) {
// If this element comes from the sub-expression, we've already
// analyzed it. (Variadic arguments also end up here, which is
// correct for our purposes.)
auto elt = shuffle->getElementMapping()[i];
if (elt >= 0) {
// Ignore.
// Otherwise, it might come from a default argument. It still
// might contribute to 'rethrows', but treat it as an opaque source.
} else if (elt == TupleShuffleExpr::DefaultInitialize ||
elt == TupleShuffleExpr::CallerDefaultInitialize) {
result.merge(classifyArgumentByType(paramTupleType->getElementType(i),
PotentialReason::forDefaultArgument()));
}
}
return result;
}
/// Given a tuple shuffle and an original parameter type, construct
/// the type of the source of the tuple shuffle preserving as much
/// information as possible from the original parameter type.
Type reverseShuffleParamType(TupleShuffleExpr *shuffle,
TupleType *origParamTupleType) {
SmallVector<TupleTypeElt, 4> origSrcElts;
if (shuffle->isSourceScalar()) {
origSrcElts.append(1, TupleTypeElt());
} else {
auto srcTupleType = shuffle->getSubExpr()->getType()->castTo<TupleType>();
origSrcElts.append(srcTupleType->getNumElements(), TupleTypeElt());
}
auto mapping = shuffle->getElementMapping();
for (unsigned destIndex = 0; destIndex != mapping.size(); ++destIndex) {
auto srcIndex = shuffle->getElementMapping()[destIndex];
if (srcIndex >= 0) {
origSrcElts[srcIndex] = origParamTupleType->getElement(destIndex);
} else if (srcIndex == TupleShuffleExpr::DefaultInitialize ||
srcIndex == TupleShuffleExpr::CallerDefaultInitialize) {
// Nothing interesting from the source expression.
} else if (srcIndex == TupleShuffleExpr::Variadic) {
// Variadic arguments never contribute to 'rethrows'.
// Assign the rest of the source elements parameter types that will
// cause the recursive walker to ignore them.
for (unsigned srcIndex : shuffle->getVariadicArgs()) {
assert(srcIndex >= 0 && "default-initialized variadic argument?");
origSrcElts[srcIndex] =
origParamTupleType->getASTContext().TheRawPointerType;
}
// We're done iterating these elements.
break;
} else {
llvm_unreachable("bad source-element mapping!");
}
}
if (shuffle->isSourceScalar()) {
return origSrcElts[0].getType();
} else {
return TupleType::get(origSrcElts, origParamTupleType->getASTContext());
}
}
/// Given the type of an argument, try to determine if it contains
/// a throwing function in a way that is permitted to cause a
/// 'rethrows' function to throw.
static Classification classifyArgumentByType(Type paramType,
PotentialReason reason) {
if (!paramType || paramType->is<ErrorType>())
return Classification::forInvalidCode();
if (auto fnType = paramType->getAs<AnyFunctionType>()) {
if (fnType->throws()) {
return Classification::forThrow(reason);
} else {
return Classification();
}
}
if (auto tupleType = paramType->getAs<TupleType>()) {
Classification result;
for (auto eltType : tupleType->getElementTypes()) {
result.merge(classifyArgumentByType(eltType, reason));
}
return result;
}
// No other types include throwing functions for now.
return Classification();
}
};
/// An error-handling context.
class Context {
public:
enum class Kind : uint8_t {
/// A context that handles errors.
Handled,
/// A non-throwing function.
NonThrowingFunction,
/// A rethrowing function.
RethrowingFunction,
/// A non-throwing autoclosure.
NonThrowingAutoClosure,
/// A non-exhaustive catch within a non-throwing function.
NonExhaustiveCatch,
/// A default argument expression.
DefaultArgument,
/// The initializer for an instance variable.
IVarInitializer,
/// The initializer for a global variable.
GlobalVarInitializer,
/// The initializer for an enum element.
EnumElementInitializer,
/// The pattern of a catch.
CatchPattern,
/// The pattern of a catch.
CatchGuard,
};
private:
template <class T>
static Kind getKindForFunctionBody(T *fn) {
switch (classifyFunctionBodyWithoutContext(fn)) {
case ThrowingKind::None:
return Kind::NonThrowingFunction;
case ThrowingKind::Invalid:
case ThrowingKind::RethrowingOnly:
case ThrowingKind::Throws:
return Kind::Handled;
}
llvm_unreachable("invalid classify result");
}
Kind TheKind;
bool DiagnoseErrorOnTry = false;
DeclContext *RethrowsDC = nullptr;
explicit Context(Kind kind) : TheKind(kind) {}
public:
static Context getHandled() {
return Context(Kind::Handled);
}
static Context forTopLevelCode(TopLevelCodeDecl *D) {
// Top-level code implicitly handles errors.
return Context(Kind::Handled);
}
static Context forFunction(AbstractFunctionDecl *D) {
if (D->getAttrs().hasAttribute<RethrowsAttr>()) {
Context result(Kind::RethrowingFunction);
result.RethrowsDC = D;
return result;
}
return Context(getKindForFunctionBody(D));
}
static Context forInitializer(Initializer *init) {
if (isa<DefaultArgumentInitializer>(init)) {
return Context(Kind::DefaultArgument);
}
auto binding = cast<PatternBindingInitializer>(init)->getBinding();
assert(!binding->getDeclContext()->isLocalContext() &&
"setting up error context for local pattern binding?");
if (!binding->isStatic() && binding->getDeclContext()->isTypeContext()) {
return Context(Kind::IVarInitializer);
} else {
return Context(Kind::GlobalVarInitializer);
}
}
static Context forEnumElementInitializer(EnumElementDecl *elt) {
return Context(Kind::EnumElementInitializer);
}
static Context forClosure(AbstractClosureExpr *E) {
auto kind = getKindForFunctionBody(E);
if (kind != Kind::Handled && isa<AutoClosureExpr>(E))
kind = Kind::NonThrowingAutoClosure;
return Context(kind);
}
static Context forNonExhaustiveCatch(DoCatchStmt *S) {
return Context(Kind::NonExhaustiveCatch);
}
static Context forCatchPattern(CatchStmt *S) {
return Context(Kind::CatchPattern);
}
static Context forCatchGuard(CatchStmt *S) {
return Context(Kind::CatchGuard);
}
Kind getKind() const { return TheKind; }
bool handlesNothing() const {
return getKind() != Kind::Handled &&
getKind() != Kind::RethrowingFunction;
}
bool handles(ThrowingKind errorKind) const {
switch (errorKind) {
case ThrowingKind::None:
case ThrowingKind::Invalid:
return true;
// A call that's rethrowing-only can be handled by 'rethrows'.
case ThrowingKind::RethrowingOnly:
return !handlesNothing();
// An operation that always throws can only be handled by an
// all-handling context.
case ThrowingKind::Throws:
return getKind() == Kind::Handled;
}
llvm_unreachable("bad error kind");
}
DeclContext *getRethrowsDC() const { return RethrowsDC; }
static void diagnoseThrowInIllegalContext(TypeChecker &TC, ASTNode node,
StringRef description) {
if (auto *e = node.dyn_cast<Expr*>())
if (isa<ApplyExpr>(e)) {
TC.diagnose(e->getLoc(), diag::throwing_call_in_illegal_context,
description);
return;
}
TC.diagnose(node.getStartLoc(), diag::throw_in_illegal_context,
description);
}
static void maybeAddRethrowsNote(TypeChecker &TC, SourceLoc loc,
const PotentialReason &reason) {
switch (reason.getKind()) {
case PotentialReason::Kind::Throw:
llvm_unreachable("should already have been covered");
case PotentialReason::Kind::CallThrows:
// Already fully diagnosed.
return;
case PotentialReason::Kind::CallRethrowsWithExplicitThrowingArgument:
TC.diagnose(reason.getThrowingArgument()->getLoc(),
diag::because_rethrows_argument_throws);
return;
case PotentialReason::Kind::CallRethrowsWithDefaultThrowingArgument:
TC.diagnose(loc, diag::because_rethrows_default_argument_throws);
return;
}
llvm_unreachable("bad reason kind");
}
void diagnoseUncoveredThrowSite(TypeChecker &TC, ASTNode E,
const PotentialReason &reason) {
auto message = diag::throwing_call_without_try;
auto loc = E.getStartLoc();
SourceRange highlight;
// Generate more specific messages in some cases.
if (auto e = dyn_cast_or_null<ApplyExpr>(E.dyn_cast<Expr*>())) {
if (isa<PrefixUnaryExpr>(e) || isa<PostfixUnaryExpr>(e) ||
isa<BinaryExpr>(e)) {
loc = e->getFn()->getStartLoc();
message = diag::throwing_operator_without_try;
}
highlight = e->getSourceRange();
}
TC.diagnose(loc, message).highlight(highlight);
maybeAddRethrowsNote(TC, loc, reason);
}
void diagnoseThrowInLegalContext(TypeChecker &TC, ASTNode node,
bool isTryCovered,
const PotentialReason &reason,
Diag<> diagForThrow,
Diag<> diagForThrowingCall,
Diag<> diagForTrylessThrowingCall) {
auto loc = node.getStartLoc();
if (reason.isThrow()) {
TC.diagnose(loc, diagForThrow);
return;
}
// Allow the diagnostic to fire on the 'try' if we don't have
// anything else to say.
if (isTryCovered && !reason.isRethrowsCall() &&
(getKind() == Kind::NonThrowingFunction ||
getKind() == Kind::NonExhaustiveCatch)) {
DiagnoseErrorOnTry = true;
return;
}
if (isTryCovered) {
TC.diagnose(loc, diagForThrowingCall);
} else {
TC.diagnose(loc, diagForTrylessThrowingCall);
}
maybeAddRethrowsNote(TC, loc, reason);
}
void diagnoseUnhandledThrowSite(TypeChecker &TC, ASTNode E, bool isTryCovered,
const PotentialReason &reason) {
switch (getKind()) {