forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTypeCheckPattern.cpp
1536 lines (1335 loc) · 56.3 KB
/
TypeCheckPattern.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- TypeCheckPattern.cpp - Type Checking for Patterns ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for patterns, analysing a
// pattern tree in both bottom-up and top-down ways.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "GenericTypeResolver.h"
#include "swift/AST/Attr.h"
#include "swift/AST/ExprHandle.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/NameLookup.h"
#include "llvm/Support/SaveAndRestore.h"
#include <utility>
using namespace swift;
/// If the given VarDecl is a computed property whose getter always returns a
/// particular enum element, return that element.
///
/// This requires the getter's body to have a certain syntactic form. It should
/// be kept in sync with importEnumCaseAlias in the ClangImporter library.
static EnumElementDecl *
extractEnumElement(const VarDecl *constant) {
const FuncDecl *getter = constant->getGetter();
if (!getter)
return nullptr;
const BraceStmt *body = getter->getBody();
if (!body || body->getNumElements() != 1)
return nullptr;
auto *retStmtRaw = body->getElement(0).dyn_cast<Stmt *>();
auto *retStmt = dyn_cast_or_null<ReturnStmt>(retStmtRaw);
if (!retStmt)
return nullptr;
auto *resultExpr = dyn_cast_or_null<ApplyExpr>(retStmt->getResult());
if (!resultExpr)
return nullptr;
auto *ctorExpr = dyn_cast<DeclRefExpr>(resultExpr->getFn());
if (!ctorExpr)
return nullptr;
return dyn_cast<EnumElementDecl>(ctorExpr->getDecl());
}
/// Find the first enum element in \p foundElements.
///
/// If there are no enum elements but there are properties, attempts to map
/// an arbitrary property to an enum element using extractEnumElement.
static EnumElementDecl *
filterForEnumElement(LookupResult foundElements) {
EnumElementDecl *foundElement = nullptr;
VarDecl *foundConstant = nullptr;
for (ValueDecl *e : foundElements) {
assert(e);
if (e->isInvalid()) {
continue;
}
if (auto *oe = dyn_cast<EnumElementDecl>(e)) {
// Ambiguities should be ruled out by parsing.
assert(!foundElement && "ambiguity in enum case name lookup?!");
foundElement = oe;
continue;
}
if (auto *var = dyn_cast<VarDecl>(e)) {
foundConstant = var;
continue;
}
}
if (!foundElement && foundConstant && foundConstant->hasClangNode())
foundElement = extractEnumElement(foundConstant);
return foundElement;
}
/// Find an unqualified enum element.
static EnumElementDecl *
lookupUnqualifiedEnumMemberElement(TypeChecker &TC, DeclContext *DC,
Identifier name) {
auto lookupOptions = defaultUnqualifiedLookupOptions;
lookupOptions |= NameLookupFlags::KnownPrivate;
auto lookup = TC.lookupUnqualified(DC, name, SourceLoc(), lookupOptions);
return filterForEnumElement(lookup);
}
/// Find an enum element in an enum type.
static EnumElementDecl *
lookupEnumMemberElement(TypeChecker &TC, DeclContext *DC, Type ty,
Identifier name) {
assert(ty->getAnyNominal());
// Look up the case inside the enum.
// FIXME: We should be able to tell if this is a private lookup.
NameLookupOptions lookupOptions
= defaultMemberLookupOptions - NameLookupFlags::DynamicLookup;
LookupResult foundElements = TC.lookupMember(DC, ty, name, lookupOptions);
return filterForEnumElement(foundElements);
}
namespace {
// 'T(x...)' is treated as a NominalTypePattern if 'T' references a type
// by name, or an EnumElementPattern if 'T' references an enum element.
// Build up an IdentTypeRepr and see what it resolves to.
struct ExprToIdentTypeRepr : public ASTVisitor<ExprToIdentTypeRepr, bool>
{
SmallVectorImpl<ComponentIdentTypeRepr *> &components;
ASTContext &C;
ExprToIdentTypeRepr(decltype(components) &components, ASTContext &C)
: components(components), C(C) {}
bool visitExpr(Expr *e) {
return false;
}
bool visitTypeExpr(TypeExpr *te) {
if (auto *TR = te->getTypeRepr())
if (auto *CITR = dyn_cast<ComponentIdentTypeRepr>(TR)) {
components.push_back(CITR);
return true;
}
return false;
}
bool visitDeclRefExpr(DeclRefExpr *dre) {
assert(components.empty() && "decl ref should be root element of expr");
// Get the declared type.
if (auto *td = dyn_cast<TypeDecl>(dre->getDecl())) {
components.push_back(
new (C) SimpleIdentTypeRepr(dre->getLoc(), dre->getDecl()->getName()));
components.back()->setValue(td);
return true;
}
return false;
}
bool visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *udre) {
assert(components.empty() && "decl ref should be root element of expr");
// Track the AST location of the component.
components.push_back(
new (C) SimpleIdentTypeRepr(udre->getLoc(), udre->getName()));
return true;
}
bool visitUnresolvedDotExpr(UnresolvedDotExpr *ude) {
if (!visit(ude->getBase()))
return false;
assert(!components.empty() && "no components before dot expr?!");
// Track the AST location of the new component.
components.push_back(
new (C) SimpleIdentTypeRepr(ude->getLoc(), ude->getName()));
return true;
}
bool visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *use) {
if (!visit(use->getSubExpr()))
return false;
assert(!components.empty() && "no components before generic args?!");
// Track the AST location of the generic arguments.
SmallVector<TypeRepr*, 4> argTypeReprs;
for (auto &arg : use->getUnresolvedParams())
argTypeReprs.push_back(arg.getTypeRepr());
auto origComponent = components.back();
components.back() = new (C) GenericIdentTypeRepr(origComponent->getIdLoc(),
origComponent->getIdentifier(),
C.AllocateCopy(argTypeReprs),
SourceRange(use->getLAngleLoc(), use->getRAngleLoc()));
return true;
}
};
} // end anonymous namespace
namespace {
class UnresolvedPatternFinder : public ASTWalker {
bool &HadUnresolvedPattern;
public:
UnresolvedPatternFinder(bool &HadUnresolvedPattern)
: HadUnresolvedPattern(HadUnresolvedPattern) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// If we find an UnresolvedPatternExpr, return true.
if (isa<UnresolvedPatternExpr>(E)) {
HadUnresolvedPattern = true;
return { false, E };
}
return { true, E };
}
static bool hasAny(Expr *E) {
bool HasUnresolvedPattern = false;
E->walk(UnresolvedPatternFinder(HasUnresolvedPattern));
return HasUnresolvedPattern;
}
};
} // end anonymous namespace
namespace {
class ResolvePattern : public ASTVisitor<ResolvePattern,
/*ExprRetTy=*/Pattern*,
/*StmtRetTy=*/void,
/*DeclRetTy=*/void,
/*PatternRetTy=*/Pattern*>
{
public:
TypeChecker &TC;
DeclContext *DC;
bool &DiagnosedError;
ResolvePattern(TypeChecker &TC, DeclContext *DC, bool &DiagnosedError)
: TC(TC), DC(DC), DiagnosedError(DiagnosedError) {}
// Convert a subexpression to a pattern if possible, or wrap it in an
// ExprPattern.
Pattern *getSubExprPattern(Expr *E) {
if (Pattern *p = visit(E))
return p;
foundUnknownExpr(E);
return new (TC.Context) ExprPattern(E, nullptr, nullptr);
}
void foundUnknownExpr(Expr *E) {
// If we find unresolved pattern, diagnose this as an illegal pattern. Sema
// does later checks for UnresolvedPatternExpr's in arbitrary places, but
// rejecting these early is good because we can provide better up-front
// diagnostics and can recover better from it.
if (!UnresolvedPatternFinder::hasAny(E) || DiagnosedError) return;
TC.diagnose(E->getStartLoc(), diag::invalid_pattern)
.highlight(E->getSourceRange());
DiagnosedError = true;
}
// Handle productions that are always leaf patterns or are already resolved.
#define ALWAYS_RESOLVED_PATTERN(Id) \
Pattern *visit##Id##Pattern(Id##Pattern *P) { return P; }
ALWAYS_RESOLVED_PATTERN(Named)
ALWAYS_RESOLVED_PATTERN(Any)
ALWAYS_RESOLVED_PATTERN(Is)
ALWAYS_RESOLVED_PATTERN(Paren)
ALWAYS_RESOLVED_PATTERN(Tuple)
ALWAYS_RESOLVED_PATTERN(NominalType)
ALWAYS_RESOLVED_PATTERN(EnumElement)
ALWAYS_RESOLVED_PATTERN(Bool)
#undef ALWAYS_RESOLVED_PATTERN
Pattern *visitVarPattern(VarPattern *P) {
// Keep track of the fact that we're inside of a var/let pattern. This
// affects how unqualified identifiers are processed.
P->setSubPattern(visit(P->getSubPattern()));
// If the var pattern has no variables bound underneath it, then emit a
// warning that the var/let is pointless.
if (!DiagnosedError && !P->isImplicit()) {
bool HasVariable = false;
P->forEachVariable([&](VarDecl *VD) { HasVariable = true; });
if (!HasVariable) {
TC.diagnose(P->getLoc(), diag::var_pattern_didnt_bind_variables,
P->isLet() ? "let" : "var")
.highlight(P->getSubPattern()->getSourceRange())
.fixItRemove(P->getLoc());
}
}
return P;
}
Pattern *visitOptionalSomePattern(OptionalSomePattern *P) {
P->setSubPattern(visit(P->getSubPattern()));
return P;
}
Pattern *visitTypedPattern(TypedPattern *P) {
P->setSubPattern(visit(P->getSubPattern()));
return P;
}
Pattern *visitExprPattern(ExprPattern *P) {
if (P->isResolved())
return P;
// Try to convert to a pattern.
Pattern *exprAsPattern = visit(P->getSubExpr());
// If we failed, keep the ExprPattern as is.
if (!exprAsPattern) {
foundUnknownExpr(P->getSubExpr());
P->setResolved(true);
return P;
}
return exprAsPattern;
}
// Most exprs remain exprs and should be wrapped in ExprPatterns.
Pattern *visitExpr(Expr *E) {
return nullptr;
}
// Unwrap UnresolvedPatternExprs.
Pattern *visitUnresolvedPatternExpr(UnresolvedPatternExpr *E) {
return visit(E->getSubPattern());
}
// Convert a '_' expression to an AnyPattern.
Pattern *visitDiscardAssignmentExpr(DiscardAssignmentExpr *E) {
return new (TC.Context) AnyPattern(E->getLoc(), E->isImplicit());
}
// Cast expressions 'x as T' get resolved to checked cast patterns.
// Pattern resolution occurs before sequence resolution, so the cast will
// appear as a SequenceExpr.
Pattern *visitSequenceExpr(SequenceExpr *E) {
if (E->getElements().size() != 3)
return nullptr;
auto cast = dyn_cast<CoerceExpr>(E->getElement(1));
if (!cast)
return nullptr;
Pattern *subPattern = getSubExprPattern(E->getElement(0));
return new (TC.Context) IsPattern(cast->getLoc(),
cast->getCastTypeLoc(),
subPattern,
CheckedCastKind::Unresolved);
}
// Convert a paren expr to a pattern if it contains a pattern.
Pattern *visitParenExpr(ParenExpr *E) {
if (Pattern *subPattern = visit(E->getSubExpr()))
return new (TC.Context) ParenPattern(E->getLParenLoc(), subPattern,
E->getRParenLoc());
return nullptr;
}
// Convert all tuples to patterns.
Pattern *visitTupleExpr(TupleExpr *E) {
// Construct a TuplePattern.
SmallVector<TuplePatternElt, 4> patternElts;
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
Pattern *pattern = getSubExprPattern(E->getElement(i));
patternElts.push_back(TuplePatternElt(E->getElementName(i),
E->getElementNameLoc(i),
pattern,
false));
}
return TuplePattern::create(TC.Context, E->getLoc(),
patternElts, E->getRParenLoc());
}
Pattern *convertBindingsToOptionalSome(Expr *E) {
auto *Bind = dyn_cast<BindOptionalExpr>(E->getSemanticsProvidingExpr());
if (!Bind) return getSubExprPattern(E);
auto sub = convertBindingsToOptionalSome(Bind->getSubExpr());
return new (TC.Context) OptionalSomePattern(sub, Bind->getQuestionLoc());
}
// Convert a x? to OptionalSome pattern. In the AST form, this will look like
// an OptionalEvaluationExpr with an immediate BindOptionalExpr inside of it.
Pattern *visitOptionalEvaluationExpr(OptionalEvaluationExpr *E) {
// We only handle the case where one or more bind expressions are subexprs
// of the optional evaluation. Other cases are not simple postfix ?'s.
if (!isa<BindOptionalExpr>(E->getSubExpr()->getSemanticsProvidingExpr()))
return nullptr;
return convertBindingsToOptionalSome(E->getSubExpr());
}
// Unresolved member syntax '.Element' forms an EnumElement pattern. The
// element will be resolved when we type-check the pattern.
Pattern *visitUnresolvedMemberExpr(UnresolvedMemberExpr *ume) {
// We the unresolved member has an argument, turn it into a subpattern.
Pattern *subPattern = nullptr;
if (auto arg = ume->getArgument()) {
subPattern = getSubExprPattern(arg);
}
return new (TC.Context) EnumElementPattern(TypeLoc(), ume->getDotLoc(),
ume->getNameLoc(),
ume->getName(),
nullptr,
subPattern);
}
// Member syntax 'T.Element' forms a pattern if 'T' is an enum and the
// member name is a member of the enum.
Pattern *visitUnresolvedDotExpr(UnresolvedDotExpr *ude) {
GenericTypeToArchetypeResolver resolver;
SmallVector<ComponentIdentTypeRepr *, 2> components;
if (!ExprToIdentTypeRepr(components, TC.Context).visit(ude->getBase()))
return nullptr;
auto *repr = IdentTypeRepr::create(TC.Context, components);
// See if the repr resolves to a type.
Type ty = TC.resolveIdentifierType(DC, repr, TR_AllowUnboundGenerics,
/*diagnoseErrors*/false, &resolver,
nullptr);
auto *enumDecl = dyn_cast_or_null<EnumDecl>(ty->getAnyNominal());
if (!enumDecl)
return nullptr;
EnumElementDecl *referencedElement
= lookupEnumMemberElement(TC, DC, ty, ude->getName());
// Build a TypeRepr from the head of the full path.
TypeLoc loc(repr);
loc.setType(ty);
return new (TC.Context) EnumElementPattern(loc,
ude->getDotLoc(),
ude->getNameLoc(),
ude->getName(),
referencedElement,
nullptr);
}
// A DeclRef 'E' that refers to an enum element forms an EnumElementPattern.
Pattern *visitDeclRefExpr(DeclRefExpr *de) {
auto *elt = dyn_cast<EnumElementDecl>(de->getDecl());
if (!elt)
return nullptr;
// Use the type of the enum from context.
TypeLoc loc = TypeLoc::withoutLoc(
elt->getParentEnum()->getDeclaredTypeInContext());
return new (TC.Context) EnumElementPattern(loc, SourceLoc(),
de->getLoc(),
elt->getName(),
elt,
nullptr);
}
Pattern *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *ude) {
// FIXME: This shouldn't be needed. It is only necessary because of the
// poor representation of clang enum aliases and should be removed when
// rdar://20879992 is addressed.
//
// Try looking up an enum element in context.
if (EnumElementDecl *referencedElement
= lookupUnqualifiedEnumMemberElement(TC, DC, ude->getName())) {
auto *enumDecl = referencedElement->getParentEnum();
auto enumTy = enumDecl->getDeclaredTypeInContext();
TypeLoc loc = TypeLoc::withoutLoc(enumTy);
return new (TC.Context) EnumElementPattern(loc, SourceLoc(),
ude->getLoc(),
ude->getName(),
referencedElement,
nullptr);
}
// Perform unqualified name lookup to find out what the UDRE is.
return getSubExprPattern(TC.resolveDeclRefExpr(ude, DC));
}
// Call syntax forms a pattern if:
// - the callee in 'Element(x...)' or '.Element(x...)'
// references an enum element. The arguments then form a tuple
// pattern matching the element's data.
// - the callee in 'T(...)' is a struct or class type. The argument tuple is
// then required to have keywords for every argument that name properties
// of the type.
Pattern *visitCallExpr(CallExpr *ce) {
PartialGenericTypeToArchetypeResolver resolver(TC);
SmallVector<ComponentIdentTypeRepr *, 2> components;
if (!ExprToIdentTypeRepr(components, TC.Context).visit(ce->getFn()))
return nullptr;
if (components.empty())
return nullptr;
auto *repr = IdentTypeRepr::create(TC.Context, components);
// See first if the entire repr resolves to a type.
Type ty = TC.resolveIdentifierType(DC, repr, TR_AllowUnboundGenerics,
/*diagnoseErrors*/false, &resolver,
nullptr);
// If we got a fully valid type, then this is a nominal type pattern.
// FIXME: Only when experimental patterns are enabled for now.
if (!ty->is<ErrorType>()
&& TC.Context.LangOpts.EnableExperimentalPatterns) {
// Validate the argument tuple elements as nominal type pattern fields.
// They must all have keywords. For recovery, we still form the pattern
// even if one or more elements are missing keywords.
auto *argTuple = dyn_cast<TupleExpr>(ce->getArg());
SmallVector<NominalTypePattern::Element, 4> elements;
if (!argTuple) {
TC.diagnose(ce->getArg()->getLoc(),
diag::nominal_type_subpattern_without_property_name);
elements.push_back({SourceLoc(), Identifier(), nullptr,
SourceLoc(), getSubExprPattern(ce->getArg())});
} else for (unsigned i = 0, e = argTuple->getNumElements(); i < e; ++i) {
if (argTuple->getElementName(i).empty()) {
TC.diagnose(argTuple->getElement(i)->getLoc(),
diag::nominal_type_subpattern_without_property_name);
}
// FIXME: TupleExpr doesn't preserve location of keyword name or colon.
elements.push_back({SourceLoc(),
argTuple->getElementName(i),
nullptr,
SourceLoc(),
getSubExprPattern(argTuple->getElement(i))});
}
// Build a TypeLoc to preserve AST location info for the reference chain.
TypeLoc loc(repr);
loc.setType(ty);
return NominalTypePattern::create(loc,
ce->getArg()->getStartLoc(),
elements,
ce->getArg()->getEndLoc(),
TC.Context);
}
// If we had a single component, try looking up an enum element in context.
if (auto compId = dyn_cast<ComponentIdentTypeRepr>(repr)) {
// Try looking up an enum element in context.
EnumElementDecl *referencedElement
= lookupUnqualifiedEnumMemberElement(TC, DC, compId->getIdentifier());
if (!referencedElement)
return nullptr;
auto *enumDecl = referencedElement->getParentEnum();
auto enumTy = enumDecl->getDeclaredTypeInContext();
TypeLoc loc = TypeLoc::withoutLoc(enumTy);
auto *subPattern = getSubExprPattern(ce->getArg());
return new (TC.Context) EnumElementPattern(loc,
SourceLoc(),
compId->getIdLoc(),
compId->getIdentifier(),
referencedElement,
subPattern);
}
// Otherwise, see whether we had an enum type as the penultimate component,
// and look up an element inside it.
auto *prefixRepr = IdentTypeRepr::create(
TC.Context,
llvm::makeArrayRef(components.data(),
components.size() - 1));
// See first if the entire repr resolves to a type.
Type enumTy = TC.resolveIdentifierType(DC, prefixRepr,
TR_AllowUnboundGenerics,
/*diagnoseErrors*/false, &resolver,
nullptr);
auto *enumDecl = dyn_cast_or_null<EnumDecl>(enumTy->getAnyNominal());
if (!enumDecl)
return nullptr;
auto compoundR = cast<CompoundIdentTypeRepr>(repr);
auto tailComponent = compoundR->Components.back();
EnumElementDecl *referencedElement
= lookupEnumMemberElement(TC, DC, enumTy, tailComponent->getIdentifier());
if (!referencedElement)
return nullptr;
// Build a TypeRepr from the head of the full path.
TypeLoc loc;
IdentTypeRepr *subRepr;
auto headComps =
compoundR->Components.slice(0, compoundR->Components.size() - 1);
if (headComps.size() == 1)
subRepr = headComps.front();
else
subRepr = new (TC.Context) CompoundIdentTypeRepr(headComps);
loc = TypeLoc(subRepr);
loc.setType(enumTy);
auto *subPattern = getSubExprPattern(ce->getArg());
return new (TC.Context) EnumElementPattern(loc,
SourceLoc(),
tailComponent->getIdLoc(),
tailComponent->getIdentifier(),
referencedElement,
subPattern);
}
};
} // end anonymous namespace
/// Perform top-down syntactic disambiguation of a pattern. Where ambiguous
/// expr/pattern productions occur (tuples, function calls, etc.), favor the
/// pattern interpretation if it forms a valid pattern; otherwise, leave it as
/// an expression. This does no type-checking except for the bare minimum to
/// disambiguate semantics-dependent pattern forms.
Pattern *TypeChecker::resolvePattern(Pattern *P, DeclContext *DC,
bool isStmtCondition) {
bool DiagnosedError = false;
P = ResolvePattern(*this, DC, DiagnosedError).visit(P);
if (DiagnosedError) return nullptr;
// If the entire pattern is "(pattern_expr (type_expr SomeType))", then this
// is an invalid pattern. If it were actually a value comparison (with ~=)
// then the metatype would have had to be spelled with "SomeType.self". What
// they actually meant is to write "is SomeType", so we rewrite it to that
// pattern for good QoI.
if (auto *EP = dyn_cast<ExprPattern>(P))
if (auto *TE = dyn_cast<TypeExpr>(EP->getSubExpr())) {
diagnose(TE->getStartLoc(), diag::type_pattern_missing_is)
.fixItInsert(TE->getStartLoc(), "is ");
P = new (Context) IsPattern(TE->getStartLoc(), TE->getTypeLoc(),
/*subpattern*/nullptr);
}
// Look through a TypedPattern if present.
auto *InnerP = P;
if (auto *TP = dyn_cast<TypedPattern>(P))
InnerP = TP->getSubPattern();
// If the pattern was valid, check for an implicit VarPattern on the outer
// level. If so, we have an "if let" condition and we want to enforce some
// more structure on it.
if (isStmtCondition && isa<VarPattern>(InnerP) && InnerP->isImplicit()) {
auto *Body = cast<VarPattern>(InnerP)->getSubPattern();
// If they wrote a "x?" pattern, they probably meant "if let x".
// Check for this and recover nicely if they wrote that.
if (auto *OSP = dyn_cast<OptionalSomePattern>(Body)) {
if (!OSP->getSubPattern()->isRefutablePattern()) {
diagnose(OSP->getStartLoc(), diag::iflet_implicitly_unwraps)
.highlight(OSP->getSourceRange())
.fixItRemove(OSP->getQuestionLoc());
return P;
}
}
// If the pattern bound is some other refutable pattern, then they
// probably meant:
// if case let <pattern> =
if (Body->isRefutablePattern()) {
diagnose(P->getLoc(), diag::iflet_pattern_matching)
.fixItInsert(P->getLoc(), "case ");
return P;
}
// "if let" implicitly looks inside of an optional, so wrap it in an
// OptionalSome pattern.
InnerP = new (Context) OptionalSomePattern(InnerP, InnerP->getEndLoc(),
true);
if (auto *TP = dyn_cast<TypedPattern>(P))
TP->setSubPattern(InnerP);
else
P = InnerP;
}
return P;
}
static bool validateTypedPattern(TypeChecker &TC, DeclContext *DC,
TypedPattern *TP,
TypeResolutionOptions options,
GenericTypeResolver *resolver) {
if (TP->hasType()) {
return TP->getType()->is<ErrorType>();
}
bool hadError = false;
TypeLoc &TL = TP->getTypeLoc();
if (TC.validateType(TL, DC, options, resolver))
hadError = true;
Type Ty = TL.getType();
if ((options & TR_Variadic) && !hadError) {
// If isn't legal to declare something both inout and variadic.
if (Ty->is<InOutType>()) {
TC.diagnose(TP->getLoc(), diag::inout_cant_be_variadic);
hadError = true;
} else {
// FIXME: Use ellipsis loc for diagnostic.
Ty = TC.getArraySliceType(TP->getLoc(), Ty);
if (Ty.isNull())
hadError = true;
}
}
if (hadError) {
TP->setType(ErrorType::get(TC.Context));
} else {
TP->setType(Ty);
}
return hadError;
}
bool TypeChecker::typeCheckPattern(Pattern *P, DeclContext *dc,
TypeResolutionOptions options,
GenericTypeResolver *resolver) {
// Make sure we always have a resolver to use.
PartialGenericTypeToArchetypeResolver defaultResolver(*this);
if (!resolver)
resolver = &defaultResolver;
TypeResolutionOptions subOptions = options - TR_Variadic;
switch (P->getKind()) {
// Type-check paren patterns by checking the sub-pattern and
// propagating that type out.
case PatternKind::Paren:
case PatternKind::Var: {
Pattern *SP;
if (auto *PP = dyn_cast<ParenPattern>(P))
SP = PP->getSubPattern();
else
SP = cast<VarPattern>(P)->getSubPattern();
if (typeCheckPattern(SP, dc, subOptions, resolver)) {
P->setType(ErrorType::get(Context));
return true;
}
if (SP->hasType()) {
auto type = SP->getType();
if (P->getKind() == PatternKind::Paren)
type = ParenType::get(Context, type);
P->setType(type);
}
return false;
}
// If we see an explicit type annotation, coerce the sub-pattern to
// that type.
case PatternKind::Typed: {
TypedPattern *TP = cast<TypedPattern>(P);
bool hadError = validateTypedPattern(*this, dc, TP, options, resolver);
Pattern *subPattern = TP->getSubPattern();
if (coercePatternToType(subPattern, dc, P->getType(),
options|TR_FromNonInferredPattern, resolver))
hadError = true;
else {
TP->setSubPattern(subPattern);
TP->setType(subPattern->getType());
}
return hadError;
}
// A wildcard or name pattern cannot appear by itself in a context
// which requires an explicit type.
case PatternKind::Any:
case PatternKind::Named:
// If we're type checking this pattern in a context that can provide type
// information, then the lack of type information is not an error.
if (options & TR_AllowUnspecifiedTypes)
return false;
diagnose(P->getLoc(), diag::cannot_infer_type_for_pattern);
P->setType(ErrorType::get(Context));
if (auto named = dyn_cast<NamedPattern>(P)) {
if (auto var = named->getDecl()) {
var->setInvalid();
var->overwriteType(ErrorType::get(Context));
}
}
return true;
// A tuple pattern propagates its tuple-ness out.
case PatternKind::Tuple: {
auto tuplePat = cast<TuplePattern>(P);
bool hadError = false;
SmallVector<TupleTypeElt, 8> typeElts;
// If this is the top level of a function input list, peel off the
// ImmediateFunctionInput marker and install a FunctionInput one instead.
auto elementOptions = withoutContext(subOptions);
if (subOptions & TR_ImmediateFunctionInput)
elementOptions |= TR_FunctionInput;
bool missingType = false;
for (unsigned i = 0, e = tuplePat->getNumElements(); i != e; ++i) {
TuplePatternElt &elt = tuplePat->getElement(i);
Pattern *pattern = elt.getPattern();
bool hasEllipsis = elt.hasEllipsis();
TypeResolutionOptions eltOptions = elementOptions;
if (hasEllipsis)
eltOptions |= TR_Variadic;
if (typeCheckPattern(pattern, dc, eltOptions, resolver)){
hadError = true;
continue;
}
if (!pattern->hasType()) {
missingType = true;
continue;
}
typeElts.push_back(TupleTypeElt(pattern->getType(),
elt.getLabel(),
elt.getDefaultArgKind(),
hasEllipsis));
}
if (hadError) {
P->setType(ErrorType::get(Context));
return true;
}
if (!missingType && !(options & TR_AllowUnspecifiedTypes)) {
P->setType(TupleType::get(typeElts, Context));
}
return false;
}
//--- Refutable patterns.
//
// Refutable patterns occur when checking the PatternBindingDecls in if/let,
// while/let, and let/else conditions.
case PatternKind::Is:
case PatternKind::NominalType:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
case PatternKind::Expr:
// In a let/else, these always require an initial value to match against.
if (!(options & TR_AllowUnspecifiedTypes)) {
diagnose(P->getLoc(), diag::refutable_pattern_requires_initializer);
P->setType(ErrorType::get(Context));
return true;
}
return false;
}
llvm_unreachable("bad pattern kind!");
}
/// Coerce the given 'isa' pattern via a conditional downcast.
///
/// This allows us to use an arbitrary conditional downcast to
/// evaluate an "is" / "as" pattern, which includes any kind of
/// downcast for which we don't have specialized logic.
static bool coercePatternViaConditionalDowncast(TypeChecker &tc,
Pattern *&pattern,
DeclContext *dc,
Type type,
TypeResolutionOptions options) {
auto isa = cast<IsPattern>(pattern);
// FIXME: We can't handle subpatterns here.
if (isa->getSubPattern()) {
tc.diagnose(isa->getLoc(), diag::isa_pattern_value,
isa->getCastTypeLoc().getType());
return false;
}
// Create a new match variable $match.
auto *matchVar = new (tc.Context) VarDecl(/*static*/ false, /*IsLet*/true,
pattern->getLoc(),
tc.Context.getIdentifier("$match"),
type, dc);
matchVar->setHasNonPatternBindingInit();
// Form the cast $match as? T, which produces an optional.
Expr *matchRef = new (tc.Context) DeclRefExpr(matchVar, pattern->getLoc(),
/*Implicit=*/true);
Expr *cast = new (tc.Context) ConditionalCheckedCastExpr(
matchRef,
isa->getLoc(),
isa->getLoc(),
isa->getCastTypeLoc());
// Type-check the cast as a condition.
if (tc.typeCheckCondition(cast, dc))
return true;
// Form an expression pattern with this match.
// FIXME: This is lossy; we can't get the value out.
pattern = new (tc.Context) ExprPattern(matchRef, /*isResolved=*/true,
/*matchExpr=*/cast, matchVar,
false);
pattern->setType(isa->getCastTypeLoc().getType());
return false;
}
/// Perform top-down type coercion on the given pattern.
bool TypeChecker::coercePatternToType(Pattern *&P, DeclContext *dc, Type type,
TypeResolutionOptions options,
GenericTypeResolver *resolver) {
TypeResolutionOptions subOptions
= options - TR_Variadic - TR_EnumPatternPayload;
switch (P->getKind()) {
// For parens and vars, just set the type annotation and propagate inwards.
case PatternKind::Paren: {
auto PP = cast<ParenPattern>(P);
auto sub = PP->getSubPattern();
auto semantic = P->getSemanticsProvidingPattern();
// If this is the payload of an enum, and the type is a single-element
// labeled tuple, treat this as a tuple pattern. It's unlikely that the
// user is interested in binding a variable of type (foo: Int).
if ((options & TR_EnumPatternPayload)
&& !isa<TuplePattern>(semantic)) {
if (auto tupleType = type->getAs<TupleType>()) {
if (tupleType->getNumElements() == 1
&& !tupleType->getElement(0).isVararg()) {
auto elementTy = tupleType->getElementType(0);
if (coercePatternToType(sub, dc, elementTy, subOptions, resolver))
return true;
TuplePatternElt elt(sub);
P = TuplePattern::create(Context, PP->getLParenLoc(), elt,
PP->getRParenLoc());
if (PP->isImplicit())
P->setImplicit();
P->setType(type);
return false;
}
}
}
if (coercePatternToType(sub, dc, type, subOptions, resolver))
return true;
PP->setSubPattern(sub);
PP->setType(sub->getType());
return false;
}
case PatternKind::Var: {
auto VP = cast<VarPattern>(P);
Pattern *sub = VP->getSubPattern();
if (coercePatternToType(sub, dc, type, subOptions, resolver))
return true;
VP->setSubPattern(sub);
if (sub->hasType())
VP->setType(sub->getType());
return false;
}
// If we see an explicit type annotation, coerce the sub-pattern to
// that type.
case PatternKind::Typed: {
TypedPattern *TP = cast<TypedPattern>(P);
bool hadError = validateTypedPattern(*this, dc, TP, options, resolver);
if (!hadError) {
if (!type->isEqual(TP->getType()) && !type->is<ErrorType>()) {
if (options & TR_OverrideType) {
TP->overwriteType(type);
} else {
diagnose(P->getLoc(), diag::pattern_type_mismatch_context, type);
hadError = true;
}
}
}
Pattern *sub = TP->getSubPattern();
hadError |= coercePatternToType(sub, dc, TP->getType(),
subOptions | TR_FromNonInferredPattern,
resolver);
if (!hadError) {
TP->setSubPattern(sub);
TP->setType(sub->getType());
}
return hadError;
}
// For wildcard and name patterns, set the type.
case PatternKind::Named: {
NamedPattern *NP = cast<NamedPattern>(P);
VarDecl *var = NP->getDecl();
if (var->isInvalid())
var->overwriteType(ErrorType::get(Context));
else
var->overwriteType(type);
checkTypeModifyingDeclAttributes(var);
if (type->is<InOutType>())
NP->getDecl()->setLet(false);
if (var->getAttrs().hasAttribute<OwnershipAttr>())
type = getTypeOfRValue(var, true);