forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreuters_mlp.py
59 lines (49 loc) · 2.06 KB
/
reuters_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.normalization import BatchNormalization
from keras.utils import np_utils
from keras.preprocessing.text import Tokenizer
'''
Train and evaluate a simple MLP on the Reuters newswire topic classification task.
GPU run command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python examples/reuters_mlp.py
CPU run command:
python examples/reuters_mlp.py
'''
max_words = 1000
batch_size = 32
nb_epoch = 5
print("Loading data...")
(X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=max_words, test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
nb_classes = np.max(y_train)+1
print(nb_classes, 'classes')
print("Vectorizing sequence data...")
tokenizer = Tokenizer(nb_words=max_words)
X_train = tokenizer.sequences_to_matrix(X_train, mode="binary")
X_test = tokenizer.sequences_to_matrix(X_test, mode="binary")
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print("Convert class vector to binary class matrix (for use with categorical_crossentropy)")
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
print('Y_train shape:', Y_train.shape)
print('Y_test shape:', Y_test.shape)
print("Building model...")
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
history = model.fit(X_train, Y_train, nb_epoch=nb_epoch, batch_size=batch_size, verbose=1, show_accuracy=True, validation_split=0.1)
score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1, show_accuracy=True)
print('Test score:', score[0])
print('Test accuracy:', score[1])