forked from pybind/pybind11
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_stl.cpp
551 lines (475 loc) · 21.1 KB
/
test_stl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
tests/test_stl.cpp -- STL type casters
Copyright (c) 2017 Wenzel Jakob <[email protected]>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include <pybind11/stl.h>
#include "constructor_stats.h"
#include "pybind11_tests.h"
#ifndef PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL
# define PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL
#endif
#include <pybind11/stl/filesystem.h>
#include <string>
#include <vector>
#if defined(PYBIND11_TEST_BOOST)
# include <boost/optional.hpp>
namespace PYBIND11_NAMESPACE {
namespace detail {
template <typename T>
struct type_caster<boost::optional<T>> : optional_caster<boost::optional<T>> {};
template <>
struct type_caster<boost::none_t> : void_caster<boost::none_t> {};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
#endif
// Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14
#if defined(PYBIND11_HAS_VARIANT)
using std::variant;
# define PYBIND11_TEST_VARIANT 1
#elif defined(PYBIND11_TEST_BOOST)
# include <boost/variant.hpp>
# define PYBIND11_TEST_VARIANT 1
using boost::variant;
namespace PYBIND11_NAMESPACE {
namespace detail {
template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
template <>
struct visit_helper<boost::variant> {
template <typename... Args>
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
return boost::apply_visitor(args...);
}
};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
#endif
PYBIND11_MAKE_OPAQUE(std::vector<std::string, std::allocator<std::string>>);
/// Issue #528: templated constructor
struct TplCtorClass {
template <typename T>
explicit TplCtorClass(const T &) {}
bool operator==(const TplCtorClass &) const { return true; }
};
namespace std {
template <>
struct hash<TplCtorClass> {
size_t operator()(const TplCtorClass &) const { return 0; }
};
} // namespace std
template <template <typename> class OptionalImpl, typename T>
struct OptionalHolder {
// NOLINTNEXTLINE(modernize-use-equals-default): breaks GCC 4.8
OptionalHolder(){};
bool member_initialized() const { return member && member->initialized; }
OptionalImpl<T> member = T{};
};
enum class EnumType {
kSet = 42,
kUnset = 85,
};
// This is used to test that return-by-ref and return-by-copy policies are
// handled properly for optional types. This is a regression test for a dangling
// reference issue. The issue seemed to require the enum value type to
// reproduce - it didn't seem to happen if the value type is just an integer.
template <template <typename> class OptionalImpl>
class OptionalProperties {
public:
using OptionalEnumValue = OptionalImpl<EnumType>;
OptionalProperties() : value(EnumType::kSet) {}
~OptionalProperties() {
// Reset value to detect use-after-destruction.
// This is set to a specific value rather than nullopt to ensure that
// the memory that contains the value gets re-written.
value = EnumType::kUnset;
}
OptionalEnumValue &access_by_ref() { return value; }
OptionalEnumValue access_by_copy() { return value; }
private:
OptionalEnumValue value;
};
// This type mimics aspects of boost::optional from old versions of Boost,
// which exposed a dangling reference bug in Pybind11. Recent versions of
// boost::optional, as well as libstdc++'s std::optional, don't seem to be
// affected by the same issue. This is meant to be a minimal implementation
// required to reproduce the issue, not fully standard-compliant.
// See issue #3330 for more details.
template <typename T>
class ReferenceSensitiveOptional {
public:
using value_type = T;
ReferenceSensitiveOptional() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
ReferenceSensitiveOptional(const T &value) : storage{value} {}
// NOLINTNEXTLINE(google-explicit-constructor)
ReferenceSensitiveOptional(T &&value) : storage{std::move(value)} {}
ReferenceSensitiveOptional &operator=(const T &value) {
storage = {value};
return *this;
}
ReferenceSensitiveOptional &operator=(T &&value) {
storage = {std::move(value)};
return *this;
}
template <typename... Args>
T &emplace(Args &&...args) {
storage.clear();
storage.emplace_back(std::forward<Args>(args)...);
return storage.back();
}
const T &value() const noexcept {
assert(!storage.empty());
return storage[0];
}
const T &operator*() const noexcept { return value(); }
const T *operator->() const noexcept { return &value(); }
explicit operator bool() const noexcept { return !storage.empty(); }
private:
std::vector<T> storage;
};
namespace PYBIND11_NAMESPACE {
namespace detail {
template <typename T>
struct type_caster<ReferenceSensitiveOptional<T>>
: optional_caster<ReferenceSensitiveOptional<T>> {};
} // namespace detail
} // namespace PYBIND11_NAMESPACE
TEST_SUBMODULE(stl, m) {
// test_vector
m.def("cast_vector", []() { return std::vector<int>{1}; });
m.def("load_vector", [](const std::vector<int> &v) { return v.at(0) == 1 && v.at(1) == 2; });
// `std::vector<bool>` is special because it returns proxy objects instead of references
m.def("cast_bool_vector", []() { return std::vector<bool>{true, false}; });
m.def("load_bool_vector",
[](const std::vector<bool> &v) { return v.at(0) == true && v.at(1) == false; });
// Unnumbered regression (caused by #936): pointers to stl containers aren't castable
m.def(
"cast_ptr_vector",
[]() {
// Using no-destructor idiom to side-step warnings from overzealous compilers.
static auto *v = new std::vector<RValueCaster>{2};
return v;
},
py::return_value_policy::reference);
// test_deque
m.def("cast_deque", []() { return std::deque<int>{1}; });
m.def("load_deque", [](const std::deque<int> &v) { return v.at(0) == 1 && v.at(1) == 2; });
// test_array
m.def("cast_array", []() { return std::array<int, 2>{{1, 2}}; });
m.def("load_array", [](const std::array<int, 2> &a) { return a[0] == 1 && a[1] == 2; });
// test_valarray
m.def("cast_valarray", []() { return std::valarray<int>{1, 4, 9}; });
m.def("load_valarray", [](const std::valarray<int> &v) {
return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9;
});
// test_map
m.def("cast_map", []() { return std::map<std::string, std::string>{{"key", "value"}}; });
m.def("load_map", [](const std::map<std::string, std::string> &map) {
return map.at("key") == "value" && map.at("key2") == "value2";
});
// test_set
m.def("cast_set", []() { return std::set<std::string>{"key1", "key2"}; });
m.def("load_set", [](const std::set<std::string> &set) {
return (set.count("key1") != 0u) && (set.count("key2") != 0u) && (set.count("key3") != 0u);
});
// test_recursive_casting
m.def("cast_rv_vector", []() { return std::vector<RValueCaster>{2}; });
m.def("cast_rv_array", []() { return std::array<RValueCaster, 3>(); });
// NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`),
// casters don't typically do anything with that, which means they fall to the `const Type &`
// caster.
m.def("cast_rv_map", []() {
return std::unordered_map<std::string, RValueCaster>{{"a", RValueCaster{}}};
});
m.def("cast_rv_nested", []() {
std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v;
v.emplace_back(); // add an array
v.back()[0].emplace_back(); // add a map to the array
v.back()[0].back().emplace("b", RValueCaster{});
v.back()[0].back().emplace("c", RValueCaster{});
v.back()[1].emplace_back(); // add a map to the array
v.back()[1].back().emplace("a", RValueCaster{});
return v;
});
static std::array<RValueCaster, 2> lva;
static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}},
{"b", RValueCaster{}}};
static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>>
lvn;
lvn["a"].emplace_back(); // add a list
lvn["a"].back().emplace_back(); // add an array
lvn["a"].emplace_back(); // another list
lvn["a"].back().emplace_back(); // add an array
lvn["b"].emplace_back(); // add a list
lvn["b"].back().emplace_back(); // add an array
lvn["b"].back().emplace_back(); // add another array
static std::vector<RValueCaster> lvv{2};
m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; });
m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; });
m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; });
m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; });
// #853:
m.def("cast_unique_ptr_vector", []() {
std::vector<std::unique_ptr<UserType>> v;
v.emplace_back(new UserType{7});
v.emplace_back(new UserType{42});
return v;
});
pybind11::enum_<EnumType>(m, "EnumType")
.value("kSet", EnumType::kSet)
.value("kUnset", EnumType::kUnset);
// test_move_out_container
struct MoveOutContainer {
struct Value {
int value;
};
std::list<Value> move_list() const { return {{0}, {1}, {2}}; }
};
py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue")
.def_readonly("value", &MoveOutContainer::Value::value);
py::class_<MoveOutContainer>(m, "MoveOutContainer")
.def(py::init<>())
.def_property_readonly("move_list", &MoveOutContainer::move_list);
// Class that can be move- and copy-constructed, but not assigned
struct NoAssign {
int value;
explicit NoAssign(int value = 0) : value(value) {}
NoAssign(const NoAssign &) = default;
NoAssign(NoAssign &&) = default;
NoAssign &operator=(const NoAssign &) = delete;
NoAssign &operator=(NoAssign &&) = delete;
};
py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators")
.def(py::init<>())
.def(py::init<int>());
struct MoveOutDetector {
MoveOutDetector() = default;
MoveOutDetector(const MoveOutDetector &) = default;
MoveOutDetector(MoveOutDetector &&other) noexcept : initialized(other.initialized) {
// steal underlying resource
other.initialized = false;
}
bool initialized = true;
};
py::class_<MoveOutDetector>(m, "MoveOutDetector", "Class with move tracking")
.def(py::init<>())
.def_readonly("initialized", &MoveOutDetector::initialized);
#ifdef PYBIND11_HAS_OPTIONAL
// test_optional
m.attr("has_optional") = true;
using opt_int = std::optional<int>;
using opt_no_assign = std::optional<NoAssign>;
m.def("double_or_zero", [](const opt_int &x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none", [](int x) -> opt_int { return x != 0 ? opt_int(x / 2) : opt_int(); });
m.def(
"test_nullopt",
[](opt_int x) { return x.value_or(42); },
py::arg_v("x", std::nullopt, "None"));
m.def(
"test_no_assign",
[](const opt_no_assign &x) { return x ? x->value : 42; },
py::arg_v("x", std::nullopt, "None"));
m.def("nodefer_none_optional", [](std::optional<int>) { return true; });
m.def("nodefer_none_optional", [](const py::none &) { return false; });
using opt_holder = OptionalHolder<std::optional, MoveOutDetector>;
py::class_<opt_holder>(m, "OptionalHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_holder::member)
.def("member_initialized", &opt_holder::member_initialized);
using opt_props = OptionalProperties<std::optional>;
pybind11::class_<opt_props>(m, "OptionalProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_props::access_by_copy);
#endif
#ifdef PYBIND11_HAS_EXP_OPTIONAL
// test_exp_optional
m.attr("has_exp_optional") = true;
using exp_opt_int = std::experimental::optional<int>;
using exp_opt_no_assign = std::experimental::optional<NoAssign>;
m.def("double_or_zero_exp", [](const exp_opt_int &x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none_exp",
[](int x) -> exp_opt_int { return x ? exp_opt_int(x / 2) : exp_opt_int(); });
m.def(
"test_nullopt_exp",
[](exp_opt_int x) { return x.value_or(42); },
py::arg_v("x", std::experimental::nullopt, "None"));
m.def(
"test_no_assign_exp",
[](const exp_opt_no_assign &x) { return x ? x->value : 42; },
py::arg_v("x", std::experimental::nullopt, "None"));
using opt_exp_holder = OptionalHolder<std::experimental::optional, MoveOutDetector>;
py::class_<opt_exp_holder>(m, "OptionalExpHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_exp_holder::member)
.def("member_initialized", &opt_exp_holder::member_initialized);
using opt_exp_props = OptionalProperties<std::experimental::optional>;
pybind11::class_<opt_exp_props>(m, "OptionalExpProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_exp_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_exp_props::access_by_copy);
#endif
#if defined(PYBIND11_TEST_BOOST)
// test_boost_optional
m.attr("has_boost_optional") = true;
using boost_opt_int = boost::optional<int>;
using boost_opt_no_assign = boost::optional<NoAssign>;
m.def("double_or_zero_boost", [](const boost_opt_int &x) -> int { return x.value_or(0) * 2; });
m.def("half_or_none_boost",
[](int x) -> boost_opt_int { return x != 0 ? boost_opt_int(x / 2) : boost_opt_int(); });
m.def(
"test_nullopt_boost",
[](boost_opt_int x) { return x.value_or(42); },
py::arg_v("x", boost::none, "None"));
m.def(
"test_no_assign_boost",
[](const boost_opt_no_assign &x) { return x ? x->value : 42; },
py::arg_v("x", boost::none, "None"));
using opt_boost_holder = OptionalHolder<boost::optional, MoveOutDetector>;
py::class_<opt_boost_holder>(m, "OptionalBoostHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_boost_holder::member)
.def("member_initialized", &opt_boost_holder::member_initialized);
using opt_boost_props = OptionalProperties<boost::optional>;
pybind11::class_<opt_boost_props>(m, "OptionalBoostProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_boost_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_boost_props::access_by_copy);
#endif
// test_refsensitive_optional
using refsensitive_opt_int = ReferenceSensitiveOptional<int>;
using refsensitive_opt_no_assign = ReferenceSensitiveOptional<NoAssign>;
m.def("double_or_zero_refsensitive",
[](const refsensitive_opt_int &x) -> int { return (x ? x.value() : 0) * 2; });
m.def("half_or_none_refsensitive", [](int x) -> refsensitive_opt_int {
return x != 0 ? refsensitive_opt_int(x / 2) : refsensitive_opt_int();
});
m.def(
"test_nullopt_refsensitive",
// NOLINTNEXTLINE(performance-unnecessary-value-param)
[](refsensitive_opt_int x) { return x ? x.value() : 42; },
py::arg_v("x", refsensitive_opt_int(), "None"));
m.def(
"test_no_assign_refsensitive",
[](const refsensitive_opt_no_assign &x) { return x ? x->value : 42; },
py::arg_v("x", refsensitive_opt_no_assign(), "None"));
using opt_refsensitive_holder = OptionalHolder<ReferenceSensitiveOptional, MoveOutDetector>;
py::class_<opt_refsensitive_holder>(
m, "OptionalRefSensitiveHolder", "Class with optional member")
.def(py::init<>())
.def_readonly("member", &opt_refsensitive_holder::member)
.def("member_initialized", &opt_refsensitive_holder::member_initialized);
using opt_refsensitive_props = OptionalProperties<ReferenceSensitiveOptional>;
pybind11::class_<opt_refsensitive_props>(m, "OptionalRefSensitiveProperties")
.def(pybind11::init<>())
.def_property_readonly("access_by_ref", &opt_refsensitive_props::access_by_ref)
.def_property_readonly("access_by_copy", &opt_refsensitive_props::access_by_copy);
#ifdef PYBIND11_HAS_FILESYSTEM
// test_fs_path
m.attr("has_filesystem") = true;
m.def("parent_path", [](const std::filesystem::path &p) { return p.parent_path(); });
#endif
#ifdef PYBIND11_TEST_VARIANT
static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value,
"visitor::result_type is required by boost::variant in C++11 mode");
struct visitor {
using result_type = const char *;
result_type operator()(int) { return "int"; }
result_type operator()(const std::string &) { return "std::string"; }
result_type operator()(double) { return "double"; }
result_type operator()(std::nullptr_t) { return "std::nullptr_t"; }
# if defined(PYBIND11_HAS_VARIANT)
result_type operator()(std::monostate) { return "std::monostate"; }
# endif
};
// test_variant
m.def("load_variant", [](const variant<int, std::string, double, std::nullptr_t> &v) {
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("load_variant_2pass", [](variant<double, int> v) {
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("cast_variant", []() {
using V = variant<int, std::string>;
return py::make_tuple(V(5), V("Hello"));
});
# if defined(PYBIND11_HAS_VARIANT)
// std::monostate tests.
m.def("load_monostate_variant",
[](const variant<std::monostate, int, std::string> &v) -> const char * {
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("cast_monostate_variant", []() {
using V = variant<std::monostate, int, std::string>;
return py::make_tuple(V{}, V(5), V("Hello"));
});
# endif
#endif
// #528: templated constructor
// (no python tests: the test here is that this compiles)
m.def("tpl_ctor_vector", [](std::vector<TplCtorClass> &) {});
m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass> &) {});
m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass> &) {});
#if defined(PYBIND11_HAS_OPTIONAL)
m.def("tpl_constr_optional", [](std::optional<TplCtorClass> &) {});
#endif
#if defined(PYBIND11_HAS_EXP_OPTIONAL)
m.def("tpl_constr_optional_exp", [](std::experimental::optional<TplCtorClass> &) {});
#endif
#if defined(PYBIND11_TEST_BOOST)
m.def("tpl_constr_optional_boost", [](boost::optional<TplCtorClass> &) {});
#endif
// test_vec_of_reference_wrapper
// #171: Can't return STL structures containing reference wrapper
m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4) {
static UserType p1{1}, p2{2}, p3{3};
return std::vector<std::reference_wrapper<UserType>>{
std::ref(p1), std::ref(p2), std::ref(p3), p4};
});
// test_stl_pass_by_pointer
m.def(
"stl_pass_by_pointer", [](std::vector<int> *v) { return *v; }, "v"_a = nullptr);
// #1258: pybind11/stl.h converts string to vector<string>
m.def("func_with_string_or_vector_string_arg_overload",
[](const std::vector<std::string> &) { return 1; });
m.def("func_with_string_or_vector_string_arg_overload",
[](const std::list<std::string> &) { return 2; });
m.def("func_with_string_or_vector_string_arg_overload", [](const std::string &) { return 3; });
class Placeholder {
public:
Placeholder() { print_created(this); }
Placeholder(const Placeholder &) = delete;
~Placeholder() { print_destroyed(this); }
};
py::class_<Placeholder>(m, "Placeholder");
/// test_stl_vector_ownership
m.def(
"test_stl_ownership",
[]() {
std::vector<Placeholder *> result;
result.push_back(new Placeholder());
return result;
},
py::return_value_policy::take_ownership);
m.def("array_cast_sequence", [](std::array<int, 3> x) { return x; });
/// test_issue_1561
struct Issue1561Inner {
std::string data;
};
struct Issue1561Outer {
std::vector<Issue1561Inner> list;
};
py::class_<Issue1561Inner>(m, "Issue1561Inner")
.def(py::init<std::string>())
.def_readwrite("data", &Issue1561Inner::data);
py::class_<Issue1561Outer>(m, "Issue1561Outer")
.def(py::init<>())
.def_readwrite("list", &Issue1561Outer::list);
m.def(
"return_vector_bool_raw_ptr",
[]() { return new std::vector<bool>(4513); },
// Without explicitly specifying `take_ownership`, this function leaks.
py::return_value_policy::take_ownership);
}