forked from h2oai/h2o-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh2o_pca.py
108 lines (96 loc) · 4.58 KB
/
h2o_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import time, math, string
import h2o_cmd
from pprint import pprint
from h2o_test import verboseprint, dump_json, check_sandbox_for_errors
def simpleCheckPCA(self, pca, **kwargs):
#print dump_json(pca)
warnings = None
if 'warnings' in pca:
warnings = pca['warnings']
# catch the 'Failed to converge" for now
x = re.compile("[Ff]ailed")
for w in warnings:
print "\nwarning:", w
if re.search(x,w): raise Exception(w)
# Check other things in the json response dictionary 'pca' here
pcaResult = pca
verboseprint('pcaResult Inspect:', dump_json(pcaResult))
#Check no NaN in sdevs, propVars, or in PCs
print "Checking sdevs..."
sdevs = pcaResult["pca_model"]["sdev"]
verboseprint("pca sdevs:", dump_json(sdevs))
# sdevs is supposed to be a list sorted by s
# sFirst = sdevs[0].s
for PC,s in enumerate(sdevs):
if math.isnan(s):
raise Exception("sdev %s is NaN: %s" % (PC,s))
# anqi says the list should be sorted..i.e. first first
## if s < sFirst:
## raise Exception("sdev %s %s is > sFirst %s. Supposed to be sorted?" % (PC, s, sFirst))
print "Checking propVars...",
propVars = pcaResult["pca_model"]["propVar"]
verboseprint("pca propVars:", dump_json(propVars))
for PC,propvar in enumerate(propVars):
if math.isnan(propvar):
raise Exception("propVar %s is NaN: %s", (PC, propvar))
print " Good!"
print "Checking eigVec...",
pcs = pcaResult["pca_model"]["eigVec"]
verboseprint("pca eigVec:", dump_json(pcs))
for i,s in enumerate(pcs):
for r,e in enumerate(s):
if math.isnan(e):
raise Exception("Component %s has NaN: %s eigenvector %s", (i, e, s))
print " Good!"
print "How many components did we get? (after enum col dropping): %s" % len(pcs)
# now print the top ten. Sorting by the value...getting key,value tuples (so we can see the column)
# it should match the column numbering..even if it skips cols due to enums
import operator
print "Just look at the sort for the first row in pca eigVec"
i = 0
s = pcs[i]
# print "s:", s
unsorted_s = [(i,j) for i,j in enumerate(s)]
sorted_s = sorted(unsorted_s, key=lambda t: abs(t[1]), reverse=True)
print "\n%s First (larger). sorted_s: %s\n" % (i, sorted_s)
print "The last entry from the eigenvector, should have the largest std dev, because it's sorted"
print "Rule of thumb is we can then look at the sorted values, and guess it's related to column importance"
print "The sort should be on the abs(), since the signs can be + or -"
# shouldn't have any errors
check_sandbox_for_errors()
return warnings
def resultsCheckPCA(self, pca, **kwargs):
pcaResult = pca
print "Checking that propVars sum to 1",
propVars = pcaResult["pca_model"]["propVar"]
sum_ = 1.0
for PC,propVar in enumerate(propVars): sum_ -= propVar
self.assertAlmostEqual(sum_,0,msg="PropVar does not sum to 1.")
print " Good!"
if pcaResult["pca_model"]["parameters"]["tolerance"] != 0.0 or pcaResult["pca_model"]["parameters"]["standardize"] != True:
return
print "Checking that sdevs^2 sums to number of variables"
#if not standardize or tolerance != 0, don't do check
sdevs = pcaResult["pca_model"]["sdev"]
sumsdevs2 = sum([s**2 for s in sdevs])
sum_ = len(sdevs)
for PC,sdev in enumerate(sdevs): sum_ -= sdev**2
if not ((sum_ -.5) < 0 < (sum_ +.5)):
print "sum(sdevs^2) are not within .5 of 0. sdevs incorrect? The difference between the number of variables and sum(sdevs^2) is: ", sum_
print "Perhaps the data was not standardized after all?"
print "These were the parameters used for pca: ", pcaResult["pca_model"]["parameters"]
print "Dumping out the standard deviations: "
print sdevs
print "sum(sdevs^2) = ", sumsdevs2
print "Expected = ", len(sdevs)
print "Difference = ", sum_
raise Exception("Standard Deviations are possibly incorrect!")
print " Good!"
print "Checking that the sum of square component loadings is 1 for each component."
print "In symbols, we are checking: sum_j(a_ij)^2 == 1 for all i"
pcs = pcaResult["pca_model"]["eigVec"]
sums = [round(sum([a**2 for a in eigenvector]),5) for eigenvector in pcs]
print "Sum of the square PC loadings are: ", sums
if sums != [1 for i in range(len(pcs))]:
raise Exception("Sum of the square loadings do not add up to 1 for at least one eigenvector!")
print "Good!"