forked from h2oai/h2o-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh2o_gbm.py
432 lines (370 loc) · 15.9 KB
/
h2o_gbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import re, random, math
import h2o_args
import h2o_nodes
import h2o_cmd
from h2o_test import verboseprint, dump_json, check_sandbox_for_errors
def plotLists(xList, xLabel=None, eListTitle=None, eList=None, eLabel=None, fListTitle=None, fList=None, fLabel=None, server=False):
if h2o_args.python_username!='kevin':
return
# Force matplotlib to not use any Xwindows backend.
if server:
import matplotlib
matplotlib.use('Agg')
import pylab as plt
print "xList", xList
print "eList", eList
print "fList", fList
font = {'family' : 'normal',
'weight' : 'normal',
'size' : 26}
### plt.rc('font', **font)
plt.rcdefaults()
if eList:
if eListTitle:
plt.title(eListTitle)
plt.figure()
plt.plot (xList, eList)
plt.xlabel(xLabel)
plt.ylabel(eLabel)
plt.draw()
plt.savefig('eplot.jpg',format='jpg')
# Image.open('testplot.jpg').save('eplot.jpg','JPEG')
if fList:
if fListTitle:
plt.title(fListTitle)
plt.figure()
plt.plot (xList, fList)
plt.xlabel(xLabel)
plt.ylabel(fLabel)
plt.draw()
plt.savefig('fplot.jpg',format='jpg')
# Image.open('fplot.jpg').save('fplot.jpg','JPEG')
if eList or fList:
plt.show()
# pretty print a cm that the C
def pp_cm(jcm, header=None):
# header = jcm['header']
# hack col index header for now..where do we get it?
header = ['"%s"'%i for i in range(len(jcm[0]))]
# cm = ' '.join(header)
cm = '{0:<8}'.format('')
for h in header:
cm = '{0}|{1:<8}'.format(cm, h)
cm = '{0}|{1:<8}'.format(cm, 'error')
c = 0
for line in jcm:
lineSum = sum(line)
if c < 0 or c >= len(line):
raise Exception("Error in h2o_gbm.pp_cm. c: %s line: %s len(line): %s jcm: %s" % (c, line, len(line), dump_json(jcm)))
print "c:", c, "line:", line
errorSum = lineSum - line[c]
if (lineSum>0):
err = float(errorSum) / lineSum
else:
err = 0.0
fl = '{0:<8}'.format(header[c])
for num in line: fl = '{0}|{1:<8}'.format(fl, num)
fl = '{0}|{1:<8.2f}'.format(fl, err)
cm = "{0}\n{1}".format(cm, fl)
c += 1
return cm
def pp_cm_summary(cm):
# hack cut and past for now (should be in h2o_gbm.py?
scoresList = cm
totalScores = 0
totalRight = 0
# individual scores can be all 0 if nothing for that output class
# due to sampling
classErrorPctList = []
predictedClassDict = {} # may be missing some? so need a dict?
for classIndex,s in enumerate(scoresList):
classSum = sum(s)
if classSum == 0 :
# why would the number of scores for a class be 0?
# in any case, tolerate. (it shows up in test.py on poker100)
print "classIndex:", classIndex, "classSum", classSum, "<- why 0?"
else:
if classIndex >= len(s):
print "Why is classindex:", classIndex, 'for s:"', s
else:
# H2O should really give me this since it's in the browser, but it doesn't
classRightPct = ((s[classIndex] + 0.0)/classSum) * 100
totalRight += s[classIndex]
classErrorPct = 100 - classRightPct
classErrorPctList.append(classErrorPct)
### print "s:", s, "classIndex:", classIndex
print "class:", classIndex, "classSum", classSum, "classErrorPct:", "%4.2f" % classErrorPct
# gather info for prediction summary
for pIndex,p in enumerate(s):
if pIndex not in predictedClassDict:
predictedClassDict[pIndex] = p
else:
predictedClassDict[pIndex] += p
totalScores += classSum
print "Predicted summary:"
# FIX! Not sure why we weren't working with a list..hack with dict for now
for predictedClass,p in predictedClassDict.items():
print str(predictedClass)+":", p
# this should equal the num rows in the dataset if full scoring? (minus any NAs)
print "totalScores:", totalScores
print "totalRight:", totalRight
if totalScores != 0: pctRight = 100.0 * totalRight/totalScores
else: pctRight = 0.0
print "pctRight:", "%5.2f" % pctRight
pctWrong = 100 - pctRight
print "pctWrong:", "%5.2f" % pctWrong
return pctWrong
# I just copied and changed GBM to GBM. Have to update to match GBM params and responses
def pickRandGbmParams(paramDict, params):
colX = 0
randomGroupSize = random.randint(1,len(paramDict))
for i in range(randomGroupSize):
randomKey = random.choice(paramDict.keys())
randomV = paramDict[randomKey]
randomValue = random.choice(randomV)
params[randomKey] = randomValue
# compare this glm to last one. since the files are concatenations,
# the results should be similar? 10% of first is allowed delta
def compareToFirstGbm(self, key, glm, firstglm):
# if isinstance(firstglm[key], list):
# in case it's not a list allready (err is a list)
verboseprint("compareToFirstGbm key:", key)
verboseprint("compareToFirstGbm glm[key]:", glm[key])
# key could be a list or not. if a list, don't want to create list of that list
# so use extend on an empty list. covers all cases?
if type(glm[key]) is list:
kList = glm[key]
firstkList = firstglm[key]
elif type(glm[key]) is dict:
raise Exception("compareToFirstGLm: Not expecting dict for " + key)
else:
kList = [glm[key]]
firstkList = [firstglm[key]]
for k, firstk in zip(kList, firstkList):
# delta must be a positive number ?
delta = .1 * abs(float(firstk))
msg = "Too large a delta (" + str(delta) + ") comparing current and first for: " + key
self.assertAlmostEqual(float(k), float(firstk), delta=delta, msg=msg)
self.assertGreaterEqual(abs(float(k)), 0.0, str(k) + " abs not >= 0.0 in current")
def goodXFromColumnInfo(y,
num_cols=None, missingValuesDict=None, constantValuesDict=None, enumSizeDict=None,
colTypeDict=None, colNameDict=None, keepPattern=None, key=None,
timeoutSecs=120, forRF=False, noPrint=False):
y = str(y)
# if we pass a key, means we want to get the info ourselves here
if key is not None:
(missingValuesDict, constantValuesDict, enumSizeDict, colTypeDict, colNameDict) = \
h2o_cmd.columnInfoFromInspect(key, exceptionOnMissingValues=False,
max_column_display=99999999, timeoutSecs=timeoutSecs)
num_cols = len(colNameDict)
# now remove any whose names don't match the required keepPattern
if keepPattern is not None:
keepX = re.compile(keepPattern)
else:
keepX = None
x = range(num_cols)
# need to walk over a copy, cause we change x
xOrig = x[:]
ignore_x = [] # for use by RF
for k in xOrig:
name = colNameDict[k]
# remove it if it has the same name as the y output
if str(k)== y: # if they pass the col index as y
if not noPrint:
print "Removing %d because name: %s matches output %s" % (k, str(k), y)
x.remove(k)
# rf doesn't want it in ignore list
# ignore_x.append(k)
elif name == y: # if they pass the name as y
if not noPrint:
print "Removing %d because name: %s matches output %s" % (k, name, y)
x.remove(k)
# rf doesn't want it in ignore list
# ignore_x.append(k)
elif keepX is not None and not keepX.match(name):
if not noPrint:
print "Removing %d because name: %s doesn't match desired keepPattern %s" % (k, name, keepPattern)
x.remove(k)
ignore_x.append(k)
# missing values reports as constant also. so do missing first.
# remove all cols with missing values
# could change it against num_rows for a ratio
elif k in missingValuesDict:
value = missingValuesDict[k]
if not noPrint:
print "Removing %d with name: %s because it has %d missing values" % (k, name, value)
x.remove(k)
ignore_x.append(k)
elif k in constantValuesDict:
value = constantValuesDict[k]
if not noPrint:
print "Removing %d with name: %s because it has constant value: %s " % (k, name, str(value))
x.remove(k)
ignore_x.append(k)
# this is extra pruning..
# remove all cols with enums, if not already removed
elif k in enumSizeDict:
value = enumSizeDict[k]
if not noPrint:
print "Removing %d %s because it has enums of size: %d" % (k, name, value)
x.remove(k)
ignore_x.append(k)
if not noPrint:
print "x has", len(x), "cols"
print "ignore_x has", len(ignore_x), "cols"
x = ",".join(map(str,x))
ignore_x = ",".join(map(str,ignore_x))
if not noPrint:
print "\nx:", x
print "\nignore_x:", ignore_x
if forRF:
return ignore_x
else:
return x
def showGBMGridResults(GBMResult, expectedErrorMax, classification=True):
# print "GBMResult:", dump_json(GBMResult)
jobs = GBMResult['jobs']
print "GBM jobs:", jobs
for jobnum, j in enumerate(jobs):
_distribution = j['_distribution']
model_key = j['destination_key']
job_key = j['job_key']
# inspect = h2o_cmd.runInspect(key=model_key)
# print "jobnum:", jobnum, dump_json(inspect)
gbmTrainView = h2o_cmd.runGBMView(model_key=model_key)
print "jobnum:", jobnum, dump_json(gbmTrainView)
if classification:
cms = gbmTrainView['gbm_model']['cms']
cm = cms[-1]['_arr'] # take the last one
print "GBM cms[-1]['_predErr']:", cms[-1]['_predErr']
print "GBM cms[-1]['_classErr']:", cms[-1]['_classErr']
pctWrongTrain = pp_cm_summary(cm);
if pctWrongTrain > expectedErrorMax:
raise Exception("Should have < %s error here. pctWrongTrain: %s" % (expectedErrorMax, pctWrongTrain))
errsLast = gbmTrainView['gbm_model']['errs'][-1]
print "\nTrain", jobnum, job_key, "\n==========\n", "pctWrongTrain:", pctWrongTrain, "errsLast:", errsLast
print "GBM 'errsLast'", errsLast
print pp_cm(cm)
else:
print "\nTrain", jobnum, job_key, "\n==========\n", "errsLast:", errsLast
print "GBMTrainView errs:", gbmTrainView['gbm_model']['errs']
def simpleCheckGBMView(node=None, gbmv=None, noPrint=False, **kwargs):
if not node:
node = h2o_nodes.nodes[0]
if 'warnings' in gbmv:
warnings = gbmv['warnings']
# catch the 'Failed to converge" for now
for w in warnings:
if not noPrint: print "\nwarning:", w
if ('Failed' in w) or ('failed' in w):
raise Exception(w)
if 'cm' in gbmv:
cm = gbmv['cm'] # only one
else:
if 'gbm_model' in gbmv:
gbm_model = gbmv['gbm_model']
else:
raise Exception("no gbm_model in gbmv? %s" % dump_json(gbmv))
cms = gbm_model['cms']
print "number of cms:", len(cms)
print "FIX! need to add reporting of h2o's _perr per class error"
# FIX! what if regression. is rf only classification?
print "cms[-1]['_arr']:", cms[-1]['_arr']
print "cms[-1]['_predErr']:", cms[-1]['_predErr']
print "cms[-1]['_classErr']:", cms[-1]['_classErr']
## print "cms[-1]:", dump_json(cms[-1])
## for i,c in enumerate(cms):
## print "cm %s: %s" % (i, c['_arr'])
cm = cms[-1]['_arr'] # take the last one
scoresList = cm
used_trees = gbm_model['N']
errs = gbm_model['errs']
print "errs[0]:", errs[0]
print "errs[-1]:", errs[-1]
print "errs:", errs
# if we got the ntree for comparison. Not always there in kwargs though!
param_ntrees = kwargs.get('ntrees',None)
if (param_ntrees is not None and used_trees != param_ntrees):
raise Exception("used_trees should == param_ntree. used_trees: %s" % used_trees)
if (used_trees+1)!=len(cms) or (used_trees+1)!=len(errs):
raise Exception("len(cms): %s and len(errs): %s should be one more than N %s trees" % (len(cms), len(errs), used_trees))
totalScores = 0
totalRight = 0
# individual scores can be all 0 if nothing for that output class
# due to sampling
classErrorPctList = []
predictedClassDict = {} # may be missing some? so need a dict?
for classIndex,s in enumerate(scoresList):
classSum = sum(s)
if classSum == 0 :
# why would the number of scores for a class be 0? does GBM CM have entries for non-existent classes
# in a range??..in any case, tolerate. (it shows up in test.py on poker100)
if not noPrint: print "class:", classIndex, "classSum", classSum, "<- why 0?"
else:
# H2O should really give me this since it's in the browser, but it doesn't
classRightPct = ((s[classIndex] + 0.0)/classSum) * 100
totalRight += s[classIndex]
classErrorPct = round(100 - classRightPct, 2)
classErrorPctList.append(classErrorPct)
### print "s:", s, "classIndex:", classIndex
if not noPrint: print "class:", classIndex, "classSum", classSum, "classErrorPct:", "%4.2f" % classErrorPct
# gather info for prediction summary
for pIndex,p in enumerate(s):
if pIndex not in predictedClassDict:
predictedClassDict[pIndex] = p
else:
predictedClassDict[pIndex] += p
totalScores += classSum
#****************************
if not noPrint:
print "Predicted summary:"
# FIX! Not sure why we weren't working with a list..hack with dict for now
for predictedClass,p in predictedClassDict.items():
print str(predictedClass)+":", p
# this should equal the num rows in the dataset if full scoring? (minus any NAs)
print "totalScores:", totalScores
print "totalRight:", totalRight
if totalScores != 0:
pctRight = 100.0 * totalRight/totalScores
else:
pctRight = 0.0
pctWrong = 100 - pctRight
print "pctRight:", "%5.2f" % pctRight
print "pctWrong:", "%5.2f" % pctWrong
#****************************
# more testing for GBMView
# it's legal to get 0's for oobe error # if sample_rate = 1
sample_rate = kwargs.get('sample_rate', None)
validation = kwargs.get('validation', None)
if (sample_rate==1 and not validation):
pass
elif (totalScores<=0 or totalScores>5e9):
raise Exception("scores in GBMView seems wrong. scores:", scoresList)
varimp = gbm_model['varimp']
treeStats = gbm_model['treeStats']
if not treeStats:
raise Exception("treeStats not right?: %s" % dump_json(treeStats))
# print "json:", dump_json(gbmv)
data_key = gbm_model['_dataKey']
model_key = gbm_model['_key']
classification_error = pctWrong
if not noPrint:
if 'minLeaves' not in treeStats or not treeStats['minLeaves']:
raise Exception("treeStats seems to be missing minLeaves %s" % dump_json(treeStats))
print """
Leaves: {0} / {1} / {2}
Depth: {3} / {4} / {5}
Err: {6:0.2f} %
""".format(
treeStats['minLeaves'],
treeStats['meanLeaves'],
treeStats['maxLeaves'],
treeStats['minDepth'],
treeStats['meanDepth'],
treeStats['maxDepth'],
classification_error,
)
### modelInspect = node.inspect(model_key)
dataInspect = h2o_cmd.runInspect(key=data_key)
check_sandbox_for_errors()
return (round(classification_error,2), classErrorPctList, totalScores)